Visual-RFT项目中的LISA数据集处理与推理分割技术解析
2025-07-10 01:05:48作者:宣利权Counsellor
引言
Visual-RFT项目中的推理分割技术引起了研究社区的广泛关注。该项目在处理视觉推理任务时,采用了类似LISA数据集的方法,但针对推理定位任务进行了专门优化。本文将深入探讨该技术的数据处理流程和实现细节。
LISA数据集与推理分割
LISA数据集最初设计用于推理分割任务,与Visual-RFT项目中的推理定位任务有着相似但不同的技术目标。推理分割要求模型不仅识别对象,还要精确分割出对象的像素级边界,而推理定位则更关注对象的空间位置信息。
数据处理关键技术
Visual-RFT项目采用了一种创新的数据处理方法,将LISA数据集中的掩码信息转换为边界框数据:
- 掩码到边界框的转换:通过提取掩码的极值点坐标,计算最小外接矩形框
- 数据格式标准化:将原始LISA数据转换为统一的JSON格式,包含图像路径、指令文本和边界框坐标
- 与SAM模型的集成:使用边界框提示Segment Anything Model(SAM)来获取分割结果
数据处理代码实现
以下是核心数据处理代码的解析:
import os
import json
from PIL import Image, ImageDraw
res = []
base_path = "/path/to/your/LISA-main/data/train"
for pth in os.listdir(base_path):
if pth.endswith(".json"):
json_path = os.path.join(base_path, pth)
with open(json_path, 'r') as f:
item = json.load(f)
instruct = item["text"]
shapes = item["shapes"]
boxes = []
for shape in shapes[:1]:
points = shape["points"]
x_coords = [p[0] for p in points]
y_coords = [p[1] for p in points]
x_min, x_max = min(x_coords), max(x_coords)
y_min, y_max = min(y_coords), max(y_coords)
boxes.append((x_min, y_min, x_max, y_max))
img_path = json_path.replace(".json", ".jpg")
if os.path.exists(img_path):
res.append({
"image_path": img_path,
"instruction": instruct,
"boxes": boxes
})
json.dump(res, open("lisa_train.json", 'w'), indent=4)
这段代码完成了以下功能:
- 遍历LISA数据集中的JSON标注文件
- 解析每个对象的点集数据并计算边界框
- 构建包含图像路径、指令文本和边界框的标准数据结构
- 输出为格式化的JSON文件
技术优势与应用
Visual-RFT项目的这一处理方法具有以下优势:
- 灵活性:将分割任务数据转换为定位任务数据,扩展了数据集的应用场景
- 效率:边界框表示比像素级掩码更节省存储和计算资源
- 兼容性:标准化格式便于与其他视觉模型(如SAM)集成
- 可扩展性:该处理方法可以轻松适配其他类似的数据集
未来发展方向
基于这一技术路线,未来可以在以下方向进行拓展:
- 多模态指令的细粒度处理
- 3D空间推理定位
- 视频时序推理定位
- 小样本和零样本推理能力提升
结论
Visual-RFT项目通过创新的数据处理方法,有效利用了LISA数据集来实现高质量的推理定位任务。这种技术路线不仅为视觉推理领域提供了实用的解决方案,也为相关研究提供了有价值的参考。随着代码的即将公开,这一技术有望在更广泛的应用场景中发挥作用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178