Visual-RFT项目中的LISA数据集处理与推理分割技术解析
2025-07-10 02:33:01作者:宣利权Counsellor
引言
Visual-RFT项目中的推理分割技术引起了研究社区的广泛关注。该项目在处理视觉推理任务时,采用了类似LISA数据集的方法,但针对推理定位任务进行了专门优化。本文将深入探讨该技术的数据处理流程和实现细节。
LISA数据集与推理分割
LISA数据集最初设计用于推理分割任务,与Visual-RFT项目中的推理定位任务有着相似但不同的技术目标。推理分割要求模型不仅识别对象,还要精确分割出对象的像素级边界,而推理定位则更关注对象的空间位置信息。
数据处理关键技术
Visual-RFT项目采用了一种创新的数据处理方法,将LISA数据集中的掩码信息转换为边界框数据:
- 掩码到边界框的转换:通过提取掩码的极值点坐标,计算最小外接矩形框
- 数据格式标准化:将原始LISA数据转换为统一的JSON格式,包含图像路径、指令文本和边界框坐标
- 与SAM模型的集成:使用边界框提示Segment Anything Model(SAM)来获取分割结果
数据处理代码实现
以下是核心数据处理代码的解析:
import os
import json
from PIL import Image, ImageDraw
res = []
base_path = "/path/to/your/LISA-main/data/train"
for pth in os.listdir(base_path):
if pth.endswith(".json"):
json_path = os.path.join(base_path, pth)
with open(json_path, 'r') as f:
item = json.load(f)
instruct = item["text"]
shapes = item["shapes"]
boxes = []
for shape in shapes[:1]:
points = shape["points"]
x_coords = [p[0] for p in points]
y_coords = [p[1] for p in points]
x_min, x_max = min(x_coords), max(x_coords)
y_min, y_max = min(y_coords), max(y_coords)
boxes.append((x_min, y_min, x_max, y_max))
img_path = json_path.replace(".json", ".jpg")
if os.path.exists(img_path):
res.append({
"image_path": img_path,
"instruction": instruct,
"boxes": boxes
})
json.dump(res, open("lisa_train.json", 'w'), indent=4)
这段代码完成了以下功能:
- 遍历LISA数据集中的JSON标注文件
- 解析每个对象的点集数据并计算边界框
- 构建包含图像路径、指令文本和边界框的标准数据结构
- 输出为格式化的JSON文件
技术优势与应用
Visual-RFT项目的这一处理方法具有以下优势:
- 灵活性:将分割任务数据转换为定位任务数据,扩展了数据集的应用场景
- 效率:边界框表示比像素级掩码更节省存储和计算资源
- 兼容性:标准化格式便于与其他视觉模型(如SAM)集成
- 可扩展性:该处理方法可以轻松适配其他类似的数据集
未来发展方向
基于这一技术路线,未来可以在以下方向进行拓展:
- 多模态指令的细粒度处理
- 3D空间推理定位
- 视频时序推理定位
- 小样本和零样本推理能力提升
结论
Visual-RFT项目通过创新的数据处理方法,有效利用了LISA数据集来实现高质量的推理定位任务。这种技术路线不仅为视觉推理领域提供了实用的解决方案,也为相关研究提供了有价值的参考。随着代码的即将公开,这一技术有望在更广泛的应用场景中发挥作用。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133