Visual-RFT项目中的LISA数据集处理与推理分割技术解析
2025-07-10 01:05:48作者:宣利权Counsellor
引言
Visual-RFT项目中的推理分割技术引起了研究社区的广泛关注。该项目在处理视觉推理任务时,采用了类似LISA数据集的方法,但针对推理定位任务进行了专门优化。本文将深入探讨该技术的数据处理流程和实现细节。
LISA数据集与推理分割
LISA数据集最初设计用于推理分割任务,与Visual-RFT项目中的推理定位任务有着相似但不同的技术目标。推理分割要求模型不仅识别对象,还要精确分割出对象的像素级边界,而推理定位则更关注对象的空间位置信息。
数据处理关键技术
Visual-RFT项目采用了一种创新的数据处理方法,将LISA数据集中的掩码信息转换为边界框数据:
- 掩码到边界框的转换:通过提取掩码的极值点坐标,计算最小外接矩形框
- 数据格式标准化:将原始LISA数据转换为统一的JSON格式,包含图像路径、指令文本和边界框坐标
- 与SAM模型的集成:使用边界框提示Segment Anything Model(SAM)来获取分割结果
数据处理代码实现
以下是核心数据处理代码的解析:
import os
import json
from PIL import Image, ImageDraw
res = []
base_path = "/path/to/your/LISA-main/data/train"
for pth in os.listdir(base_path):
if pth.endswith(".json"):
json_path = os.path.join(base_path, pth)
with open(json_path, 'r') as f:
item = json.load(f)
instruct = item["text"]
shapes = item["shapes"]
boxes = []
for shape in shapes[:1]:
points = shape["points"]
x_coords = [p[0] for p in points]
y_coords = [p[1] for p in points]
x_min, x_max = min(x_coords), max(x_coords)
y_min, y_max = min(y_coords), max(y_coords)
boxes.append((x_min, y_min, x_max, y_max))
img_path = json_path.replace(".json", ".jpg")
if os.path.exists(img_path):
res.append({
"image_path": img_path,
"instruction": instruct,
"boxes": boxes
})
json.dump(res, open("lisa_train.json", 'w'), indent=4)
这段代码完成了以下功能:
- 遍历LISA数据集中的JSON标注文件
- 解析每个对象的点集数据并计算边界框
- 构建包含图像路径、指令文本和边界框的标准数据结构
- 输出为格式化的JSON文件
技术优势与应用
Visual-RFT项目的这一处理方法具有以下优势:
- 灵活性:将分割任务数据转换为定位任务数据,扩展了数据集的应用场景
- 效率:边界框表示比像素级掩码更节省存储和计算资源
- 兼容性:标准化格式便于与其他视觉模型(如SAM)集成
- 可扩展性:该处理方法可以轻松适配其他类似的数据集
未来发展方向
基于这一技术路线,未来可以在以下方向进行拓展:
- 多模态指令的细粒度处理
- 3D空间推理定位
- 视频时序推理定位
- 小样本和零样本推理能力提升
结论
Visual-RFT项目通过创新的数据处理方法,有效利用了LISA数据集来实现高质量的推理定位任务。这种技术路线不仅为视觉推理领域提供了实用的解决方案,也为相关研究提供了有价值的参考。随着代码的即将公开,这一技术有望在更广泛的应用场景中发挥作用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869