Visual-RFT项目中的LISA数据集处理与推理分割技术解析
2025-07-10 12:38:28作者:宣利权Counsellor
引言
Visual-RFT项目中的推理分割技术引起了研究社区的广泛关注。该项目在处理视觉推理任务时,采用了类似LISA数据集的方法,但针对推理定位任务进行了专门优化。本文将深入探讨该技术的数据处理流程和实现细节。
LISA数据集与推理分割
LISA数据集最初设计用于推理分割任务,与Visual-RFT项目中的推理定位任务有着相似但不同的技术目标。推理分割要求模型不仅识别对象,还要精确分割出对象的像素级边界,而推理定位则更关注对象的空间位置信息。
数据处理关键技术
Visual-RFT项目采用了一种创新的数据处理方法,将LISA数据集中的掩码信息转换为边界框数据:
- 掩码到边界框的转换:通过提取掩码的极值点坐标,计算最小外接矩形框
 - 数据格式标准化:将原始LISA数据转换为统一的JSON格式,包含图像路径、指令文本和边界框坐标
 - 与SAM模型的集成:使用边界框提示Segment Anything Model(SAM)来获取分割结果
 
数据处理代码实现
以下是核心数据处理代码的解析:
import os
import json
from PIL import Image, ImageDraw
res = []
base_path = "/path/to/your/LISA-main/data/train"
for pth in os.listdir(base_path):
    if pth.endswith(".json"):
        json_path = os.path.join(base_path, pth)
        with open(json_path, 'r') as f:
            item = json.load(f)
        
        instruct = item["text"]
        shapes = item["shapes"]
        boxes = []
        
        for shape in shapes[:1]:
            points = shape["points"]
            x_coords = [p[0] for p in points]
            y_coords = [p[1] for p in points]
            x_min, x_max = min(x_coords), max(x_coords)
            y_min, y_max = min(y_coords), max(y_coords)
            boxes.append((x_min, y_min, x_max, y_max))
        
        img_path = json_path.replace(".json", ".jpg")
        if os.path.exists(img_path):
            res.append({
                "image_path": img_path,
                "instruction": instruct,
                "boxes": boxes
            })
json.dump(res, open("lisa_train.json", 'w'), indent=4)
这段代码完成了以下功能:
- 遍历LISA数据集中的JSON标注文件
 - 解析每个对象的点集数据并计算边界框
 - 构建包含图像路径、指令文本和边界框的标准数据结构
 - 输出为格式化的JSON文件
 
技术优势与应用
Visual-RFT项目的这一处理方法具有以下优势:
- 灵活性:将分割任务数据转换为定位任务数据,扩展了数据集的应用场景
 - 效率:边界框表示比像素级掩码更节省存储和计算资源
 - 兼容性:标准化格式便于与其他视觉模型(如SAM)集成
 - 可扩展性:该处理方法可以轻松适配其他类似的数据集
 
未来发展方向
基于这一技术路线,未来可以在以下方向进行拓展:
- 多模态指令的细粒度处理
 - 3D空间推理定位
 - 视频时序推理定位
 - 小样本和零样本推理能力提升
 
结论
Visual-RFT项目通过创新的数据处理方法,有效利用了LISA数据集来实现高质量的推理定位任务。这种技术路线不仅为视觉推理领域提供了实用的解决方案,也为相关研究提供了有价值的参考。随着代码的即将公开,这一技术有望在更广泛的应用场景中发挥作用。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445