LitServe项目实战:文件上传与JSON参数混合请求处理指南
2025-06-26 00:59:08作者:裴锟轩Denise
在LitServe项目中,开发者经常会遇到需要同时处理文件上传和额外参数的需求。本文将详细介绍如何在LitServe框架中实现这一功能,帮助开发者构建更灵活的API服务。
混合请求处理原理
LitServe框架基于FastAPI构建,天然支持处理multipart/form-data类型的请求。这种请求格式允许客户端同时上传文件和发送表单数据,非常适合需要额外控制参数的场景。
实现步骤详解
1. 服务端实现
在LitAPI子类中,我们需要重写decode_request方法来处理混合请求:
from PIL import Image
import litserve as ls
class ImageAPI(ls.LitAPI):
def setup(self, device):
self.model = lambda x: x.size
def decode_request(self, request):
# 获取额外参数
model_name = request["model_name"]
print(f"使用的模型: {model_name}")
# 处理上传的文件
uploaded_file = request["request"].filename
return Image.open(uploaded_file)
def predict(self, image):
return self.model(image)
def encode_response(self, output):
return {"output": output}
2. 客户端调用方式
客户端可以使用requests库发送混合请求:
import requests
url = "http://127.0.0.1:8000/predict"
image_path = "example.jpg"
with open(image_path, 'rb') as image_file:
# 构建multipart/form-data请求
files = {'request': image_file}
data = {"model_name": "resnet50"}
response = requests.post(url, files=files, data=data)
print(response.json())
关键点解析
-
请求结构:客户端将文件放在files参数中,其他参数放在data参数中,requests会自动构建正确的multipart/form-data请求。
-
服务端处理:在decode_request方法中,request参数实际上是一个字典,包含了所有上传的数据。文件内容可以通过request["request"].filename获取,其他参数则直接通过键名访问。
-
文件处理:示例中使用Pillow库打开图片文件,开发者可以根据实际需求使用其他库处理不同类型的文件。
实际应用场景
这种混合请求方式特别适用于以下场景:
- 模型选择:上传图片时指定使用的AI模型版本
- 参数控制:为图像处理API提供调整参数(如质量、尺寸等)
- 元数据附加:为上传的文件添加描述信息或标签
性能考虑
当处理大文件上传时,建议:
- 限制上传文件大小
- 使用流式处理避免内存溢出
- 考虑异步处理长时间运行的任务
通过本文介绍的方法,开发者可以轻松地在LitServe项目中实现文件上传与参数传递的混合请求处理,为API服务增加更多灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319