OpenBioMed 开源项目使用教程
2026-01-22 04:58:07作者:姚月梅Lane
1. 项目介绍
OpenBioMed 是一个用于 AI 赋能生物医学的 Python 深度学习工具包。它提供了对多模态生物医学数据的便捷访问,包括分子结构、转录组学、知识图谱和生物医学文本数据。OpenBioMed 支持广泛的下游应用,从传统的 AI 药物发现任务到新兴的多模态挑战。
OpenBioMed 的主要特点包括:
- 统一数据处理管道:轻松加载和转换来自不同生物医学实体和模态的异构数据为统一格式。
- 现成的推理:公开可用的预训练模型和推理演示,可轻松转移到您自己的数据或任务。
- 可复现的模型库:灵活地在现有和新应用上复制和扩展最先进的模型。
2. 项目快速启动
环境搭建
首先,创建并激活一个 conda 环境:
conda create -n OpenBioMed python=3.9
conda activate OpenBioMed
安装所需的包:
pip install -r requirements.txt
安装 PyG 依赖项:
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-$(TORCH_VERSION)+$(CUDA_VERSION).html
pip install torch-geometric
快速启动示例
以下是一个使用 OpenBioMed 进行分子性质预测的快速启动示例:
from openbiomed import MoleculePropertyPrediction
# 加载数据集
dataset = MoleculePropertyPrediction.load_dataset('MoleculeNet')
# 训练模型
model = MoleculePropertyPrediction.train(dataset)
# 测试模型
results = MoleculePropertyPrediction.test(model, dataset)
print(results)
3. 应用案例和最佳实践
案例1:分子描述生成
使用 MolFM 模型生成分子的描述文本:
from openbiomed import MoleculeCaptioning
# 加载数据集
dataset = MoleculeCaptioning.load_dataset('ChEBI-20')
# 使用 MolFM 生成描述
descriptions = MoleculeCaptioning.generate_captions(dataset, model='MolFM')
print(descriptions)
案例2:细胞类型分类
使用 CellLM 模型对细胞类型进行分类:
from openbiomed import CellTypeClassification
# 加载数据集
dataset = CellTypeClassification.load_dataset('Zheng68k')
# 训练 CellLM 模型
model = CellTypeClassification.train(dataset)
# 测试模型
results = CellTypeClassification.test(model, dataset)
print(results)
4. 典型生态项目
BioMedGPT
BioMedGPT 是一个商业友好的多模态生物医学基础模型,由 PharMolix 和 AI 产业研究院联合发布。它将生命语言(分子结构和蛋白质序列)与人类自然语言对齐,在生物医学 QA 基准上表现与人类专家相当,并在跨模态分子和蛋白质问答任务中展示了强大的性能。
MolFM
MolFM 是一个多模态分子基础模型,支持对分子结构、生物医学文本和知识图谱的联合理解。在跨模态检索任务中,MolFM 在零样本和微调场景下分别比现有模型提升了 12.03% 和 5.04%。
CellLM
CellLM 是首个使用分支对比学习策略在正常细胞和癌症细胞数据上同时训练的大规模细胞表示学习模型。它在细胞类型注释、少样本场景下的单细胞药物敏感性预测和单组学细胞系药物敏感性预测上均优于 ScBERT。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870