LLaMA-Factory项目中Qwen2-VL模型的多图SFT实现解析
2025-05-02 11:53:23作者:裘旻烁
在LLaMA-Factory项目框架下,实现Qwen2-VL模型的多图监督微调(SFT)是一个值得关注的技术要点。本文将从技术实现角度详细解析这一功能的设计原理和使用方法。
多图输入的数据结构设计
LLaMA-Factory采用了一种直观且高效的数据结构来表示多图输入场景。核心设计理念是通过特殊标记和图像路径列表的对应关系来实现多图处理:
- 文本指令中的图像标记:在human instruction部分使用连续的
<image>标记来表示图像插入位置,每个标记对应一张输入图片 - 图像路径列表:配套的images数组按顺序存储实际图像路径,数量必须与文本中的
<image>标记完全一致
这种设计既保持了数据结构的简洁性,又确保了模型能够准确识别和处理多图输入场景。
具体实现示例
以下是一个典型的多图SFT数据样本实现:
{
"conversations": [
{
"from": "human",
"value": "<image><image>请比较这两张图片的差异"
},
{
"from": "gpt",
"value": "第一张图片显示...,第二张图片则..."
}
],
"images": [
"/path/to/image1.jpg",
"/path/to/image2.jpg"
]
}
技术实现要点
- 标记解析机制:模型预处理阶段会解析文本中的
<image>标记,并将其转换为特殊的图像token - 图像特征提取:系统会按顺序加载images数组中的图片,并通过视觉编码器提取特征
- 跨模态对齐:文本token和图像特征在模型内部进行精确对齐,确保多图场景下的位置对应关系正确
应用场景扩展
这种多图处理机制可以支持多种实际应用场景:
- 图像对比分析:如商品比较、医学影像分析等
- 多视角理解:从不同角度观察同一物体
- 时序图像处理:分析同一场景随时间变化的系列图像
- 图文混合问答:基于多张图片的综合问答任务
注意事项
在实际使用中需要注意以下几点:
- 图像标记数量必须与images数组长度严格一致
- 图像路径建议使用绝对路径以确保可靠性
- 大规模训练时应注意图像加载的性能优化
- 不同分辨率的图像可能需要预处理以保证一致性
通过LLaMA-Factory的这种设计,研究人员可以方便地实现Qwen2-VL等视觉语言模型的多图监督微调,为复杂视觉理解任务提供了灵活的训练框架。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1