Mangaba.AI 开源项目教程
2025-05-21 05:52:30作者:郜逊炳
1. 项目介绍
Mangaba.AI 是一个用于创建和管理自主 AI 代理团队的框架,这些代理能够协同工作,以智能和高效的方式解决复杂的任务。该项目提供了一个基础设施,让开发者可以定义不同角色的代理(如研究者、分析员、作家等),并使它们相互通信、共享上下文以及使用多种 AI 模型(如 Gemini、OpenAI 和 Anthropic)。
2. 项目快速启动
安装依赖
首先,您需要在您的环境中安装以下依赖:
pip install google-generativeai python-dotenv
安装 Mangaba.AI
接着,安装 Mangaba.AI 本身:
pip install -e .
执行第一个示例
安装完成后,您可以通过以下命令运行一个简单的示例:
python examples/basic_usage.py
这个脚本将启动三个代理:一个研究者、一个分析员和一个作家,它们将协同工作,展示 Mangaba.AI 的基本功能。
3. 应用案例和最佳实践
创建自定义代理
根据您的需求,您可以创建具有特定角色和目标的代理。例如,如果您需要一个能够处理客户服务的代理,您可以定义一个代理来分析客户请求,并将请求分配给合适的支持人员。
# 示例代码:创建一个自定义代理
from mangaba_ai.agents import Agent
class CustomerServiceAgent(Agent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# 初始化代理的特定属性和行为
def handle_request(self, request):
# 处理客户请求的逻辑
pass
代理间的通信
Mangaba.AI 支持代理之间的直接通信。确保您的代理能够发送和接收消息,以便高效协作。
# 示例代码:代理间发送消息
def send_message_to_analyst(self, message):
self.send_message('analyst', message)
def receive_message_from_researcher(self, message):
# 接收消息的逻辑
pass
维护上下文
在执行任务时,保持上下文的一致性是至关重要的。Mangaba.AI 允许您在代理间共享和持久化上下文。
# 示例代码:维护上下文
class ContextManager(Agent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.context = {}
def update_context(self, key, value):
self.context[key] = value
def get_context(self, key):
return self.context.get(key)
4. 典型生态项目
Mangaba.AI 可以与多种服务和工具集成,以构建一个强大的生态系统。以下是一些典型的生态项目:
- Slack 集成:将 Mangaba.AI 代理集成到 Slack 工作流中,以便自动处理和响应 Slack 消息。
- GitHub 集成:利用 GitHub API,使代理能够自动化代码审查和问题跟踪。
- Jira 集成:创建代理来自动化 Jira 票务流程,包括创建、更新和关闭任务。
这些集成可以帮助您的团队实现更高效的自动化工作流程。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60