标题:**掌握未来:探索人类抓握的隐性表示力——Grasping Field 演示**
2024-06-23 10:36:49作者:龚格成
标题:掌握未来:探索人类抓握的隐性表示力——Grasping Field 演示
项目介绍
在计算机视觉和机器人领域,人类手部的精细操作一直是一个挑战。Grasping Field 项目提出了一个创新的解决方案,它利用深度学习学习隐性的抓握表示,并能针对给定的物体网格样本条件化生成手部抓握姿态。这个开源的 Grasping Field Demo 库提供了演示代码以及训练算法,使得研究人员和开发者能够实时地生成逼真的手部抓握模型。
项目技术分析
项目基于 PyTorch 框架构建,充分利用了 GPU 的计算能力。主要技术包括:
- 利用隐函数(Implicit Function)学习表示复杂的三维空间中的手部抓握。
- 基于 MANO 手部模型,实现对手部关节的精细建模。
- 使用体素采样(Voxel Sampling)和点云处理技术,为深度学习网络提供输入数据。
- 实现从RGB图像到三维抓取重建的端到端流程。
项目及技术应用场景
Grasping Field 可广泛应用于以下场景:
- 虚拟现实(VR)与增强现实(AR):生成真实的抓握动作,提高沉浸式体验。
- 机器人抓取:模拟和优化抓取策略,提升自动化水平。
- 三维重建:对未知物体进行高精度的三维抓取建模。
- 人体运动捕捉:用于动画制作或运动员技能分析。
项目特点
- 实时性能:高效的算法设计使其能够在短时间内生成多个抓取样本。
- 通用性:可以处理各种形状和大小的物体,包括从 ObMan 和 YCB 数据集中的样本。
- 可扩展性:支持不同环境下的训练,例如已知对象类别的 RGB 重建。
- 开箱即用:提供完整的依赖包安装指南和预训练模型,降低使用门槛。
通过运行简单的命令,你可以直接尝试这个项目,观察如何将二维图像转化为三维的真实手部抓握姿势。我们鼓励所有对人工智能、计算机视觉和机器人技术感兴趣的开发者尝试 Grasping Field Demo,并参与到这一前沿技术的研究中来。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
Ascend Extension for PyTorch
Python
131
159
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
221
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.48 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206