OpenML 开源项目教程
2024-09-13 08:51:32作者:申梦珏Efrain
1. 项目介绍
OpenML 是一个在线机器学习平台,旨在共享和组织数据、机器学习算法和实验。它设计用于创建一个无摩擦、网络化的生态系统,可以轻松集成到现有的流程、代码和环境中。OpenML 允许全球的人们协作并直接在彼此的最新想法、数据和结果上构建,无论他们使用的是什么工具和基础设施。
OpenML 的主要功能包括:
- 数据集共享
- 算法共享
- 实验共享
- 结果分析
2. 项目快速启动
安装 OpenML Python API
首先,确保你已经安装了 Python 3.x。然后,使用 pip 安装 OpenML Python API:
pip install openml
快速开始示例
以下是一个简单的示例,展示如何使用 OpenML Python API 下载一个数据集并运行一个简单的分类实验:
import openml
# 下载一个数据集
dataset = openml.datasets.get_dataset(61) # 61 是数据集的 ID
X, y, categorical_indicator, attribute_names = dataset.get_data(
target=dataset.default_target_attribute
)
# 列出可用的分类器
from sklearn.tree import DecisionTreeClassifier
# 创建一个分类器
clf = DecisionTreeClassifier()
# 运行实验
from sklearn.model_selection import cross_val_score
scores = cross_val_score(clf, X, y, cv=5)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
3. 应用案例和最佳实践
应用案例
OpenML 可以应用于多种场景,例如:
- 学术研究:研究人员可以使用 OpenML 共享他们的数据集和实验结果,促进科学合作。
- 工业应用:企业可以使用 OpenML 来管理和共享内部数据集,优化机器学习模型。
- 教育:教师可以使用 OpenML 的数据集和实验来教授机器学习课程。
最佳实践
- 数据集管理:确保数据集的元数据完整且准确,以便其他人可以轻松理解和使用。
- 实验记录:详细记录每个实验的参数和结果,以便后续分析和复现。
- 社区贡献:积极参与 OpenML 社区,分享你的数据集和实验,帮助他人。
4. 典型生态项目
OpenML 生态系统中有几个重要的项目,它们与 OpenML 紧密集成,提供了丰富的功能和工具:
- OpenML Python API:用于从 Python 脚本与 OpenML 交互,支持 scikit-learn 等库。
- OpenML R API:用于从 R 脚本与 OpenML 交互,支持 mlr 等库。
- OpenML Java API:用于从 Java 脚本与 OpenML 交互。
- OpenML WEKA Plugin:用于从 WEKA 工具箱与 OpenML 交互。
这些项目共同构成了一个强大的机器学习生态系统,支持从数据收集到模型部署的全流程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350