MMFewShot 开源项目教程
2024-09-13 23:08:22作者:宣海椒Queenly
1. 项目介绍
MMFewShot 是一个基于 PyTorch 的开源小样本学习工具箱,隶属于 OpenMMLab 项目。它提供了统一的小样本分类和检测的实现和评估框架。MMFewShot 的主要特点包括:
- 多任务支持:支持小样本分类和检测任务。
- 模块化设计:通过分解小样本学习框架为不同组件,使得构建新模型更加容易和灵活。
- 强基线和最先进的方法:提供了在小样本分类和检测中的强基线和最先进的方法。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.7+
- PyTorch 1.5+
- MMCV
2.2 安装 MMFewShot
你可以通过以下命令安装 MMFewShot:
pip install mmfewshot
2.3 验证安装
安装完成后,可以通过以下命令验证安装是否成功:
import mmfewshot
print(mmfewshot.__version__)
2.4 数据准备
MMFewShot 支持多种数据集,如 VOC 和 COCO。你需要下载并准备好相应的数据集。
2.5 训练模型
以下是一个简单的训练示例:
python tools/detection/train.py configs/detection/meta_rcnn/voc/split1/meta-rcnn_r101_c4_8xb4_voc-split1_base-training.py
3. 应用案例和最佳实践
3.1 小样本分类
MMFewShot 提供了多种小样本分类算法,如 Baseline、Baseline++、NegMargin 等。以下是一个使用 Baseline 进行小样本分类的示例:
python tools/classification/train.py configs/classification/baseline/voc/split1/baseline_5way_1shot_voc-split1_mini-imagenet_base-training.py
3.2 小样本检测
对于小样本检测,MMFewShot 支持 TFA、FSCE 等算法。以下是一个使用 TFA 进行小样本检测的示例:
python tools/detection/train.py configs/detection/tfa/voc/split1/tfa_r101_fpn_voc_split1_base-training.py
4. 典型生态项目
MMFewShot 是 OpenMMLab 生态系统的一部分,与其它的 OpenMMLab 项目如 MMCV、MMDetection 等紧密集成。以下是一些相关的生态项目:
- MMCV:OpenMMLab 的基础库,提供了计算机视觉的基础功能。
- MMDetection:OpenMMLab 的目标检测工具箱和基准。
- MMClassification:OpenMMLab 的图像分类工具箱和基准。
通过这些项目的集成,MMFewShot 能够提供更加全面和强大的功能,满足不同场景下的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355