MMFewShot 项目教程
2024-09-16 22:57:51作者:宣聪麟
1. 项目目录结构及介绍
MMFewShot 是一个基于 PyTorch 的开源小样本学习工具箱,属于 OpenMMLab 项目的一部分。以下是项目的目录结构及其介绍:
mmfewshot/
├── configs/ # 配置文件目录
│ ├── classification/ # 分类任务配置
│ ├── detection/ # 检测任务配置
│ └── ...
├── demo/ # 示例代码和演示脚本
├── docs/ # 文档目录
├── mmfewshot/ # 核心代码目录
│ ├── classification/ # 分类任务代码
│ ├── detection/ # 检测任务代码
│ ├── utils/ # 工具函数和辅助代码
│ └── ...
├── tests/ # 测试代码
├── tools/ # 工具脚本
│ ├── detection/ # 检测任务相关工具
│ ├── classification/ # 分类任务相关工具
│ └── ...
├── README.md # 项目介绍
├── setup.py # 安装脚本
└── ...
目录结构介绍
- configs/: 包含所有任务的配置文件,如分类和检测任务的配置。
- demo/: 包含示例代码和演示脚本,帮助用户快速上手。
- docs/: 项目文档,包括用户指南、API 参考等。
- mmfewshot/: 核心代码目录,包含分类、检测任务的具体实现和工具函数。
- tests/: 测试代码,确保代码的正确性和稳定性。
- tools/: 包含各种工具脚本,如训练、测试和推理脚本。
- README.md: 项目介绍文件,包含项目的基本信息和使用说明。
- setup.py: 安装脚本,用于安装项目依赖。
2. 项目启动文件介绍
MMFewShot 项目的启动文件主要集中在 tools/
目录下,以下是一些常用的启动文件及其功能介绍:
- tools/detection/train.py: 用于训练检测模型的脚本。
- tools/detection/test.py: 用于测试检测模型的脚本。
- tools/classification/train.py: 用于训练分类模型的脚本。
- tools/classification/test.py: 用于测试分类模型的脚本。
启动文件示例
以检测任务的训练脚本为例:
python tools/detection/train.py configs/detection/your_config.py
该命令会根据 configs/detection/your_config.py
配置文件启动训练过程。
3. 项目的配置文件介绍
配置文件是 MMFewShot 项目中非常重要的部分,它们定义了模型的结构、训练参数、数据集路径等。配置文件通常位于 configs/
目录下,以下是一些常见的配置文件及其介绍:
配置文件示例
# configs/detection/your_config.py
# 数据集配置
data = dict(
train=dict(
type='YourDataset',
ann_file='path/to/train/annotations.json',
img_prefix='path/to/train/images',
),
val=dict(
type='YourDataset',
ann_file='path/to/val/annotations.json',
img_prefix='path/to/val/images',
),
)
# 模型配置
model = dict(
type='YourDetector',
backbone=dict(
type='ResNet',
depth=50,
),
neck=dict(
type='FPN',
),
rpn_head=dict(
type='RPNHead',
),
roi_head=dict(
type='StandardRoIHead',
),
)
# 训练配置
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
),
),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
),
),
)
# 优化器配置
optimizer = dict(
type='SGD',
lr=0.02,
momentum=0.9,
weight_decay=0.0001,
)
配置文件介绍
- data: 定义数据集的类型、注释文件路径和图像路径。
- model: 定义模型的结构,包括主干网络、颈部网络、RPN 头部和 ROI 头部。
- train_cfg: 定义训练过程中的配置,如 RPN 和 RCNN 的分配器。
- optimizer: 定义优化器的类型和参数,如学习率、动量和权重衰减。
通过配置文件,用户可以灵活地调整模型的结构和训练参数,以适应不同的任务需求。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0258PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
550

飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署)
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8

React Native鸿蒙化仓库
C++
193
273

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16