BentoML 1.4发布:云原生AI应用开发新体验
BentoML是一个开源的机器学习模型服务框架,它帮助开发者将训练好的模型快速打包成可部署的服务。作为一个云原生AI应用开发平台,BentoML简化了从模型开发到生产部署的整个流程,支持多种机器学习框架,并提供高性能的API服务能力。
20倍迭代速度提升:BentoML Codespaces
BentoML 1.4最引人注目的新特性是引入了BentoML Codespaces,这是一个基于BentoCloud构建的开发平台。通过bentoml code命令,开发者可以轻松创建一个Codespace环境,实现本地代码与云端环境的自动同步。
这一功能解决了AI开发中的几个关键痛点:
- 环境一致性:消除开发与生产环境差异带来的问题
- 资源访问:直接使用云端强大的GPU资源
- 实时调试:通过云仪表板查看实时日志和进行调试
- 依赖管理:自动处理复杂的依赖关系,避免环境配置冲突
Python优先的运行时配置
1.4版本引入了全新的Python SDK来定义运行时配置,开发者现在可以直接在service.py中使用bentoml.images.PythonImage来定义Bento运行时环境,而不再需要依赖bentofile.yaml或pyproject.toml文件。
这种改进带来了几个优势:
- 配置与代码共存,提高可维护性
- 支持更灵活的运行时定制(Python版本、系统包、依赖项等)
- 新增上下文敏感的
run()方法,用于执行自定义构建命令 - 保持向后兼容,现有项目可以平滑迁移
模型加载性能优化
针对大型模型加载慢的问题,1.4版本实现了多项优化:
- 构建时下载模型,减少冷启动时间
- 使用safetensors并行加载模型权重
- 新增
bentoml.models.HuggingFaceModel,支持从HuggingFace加载模型(包括私有仓库和自定义端点) - 引入
bentoml.models.BentoModel,支持从BentoCloud和模型存储加载模型
这些改进显著提升了模型服务的启动速度和扩展性能,特别是对于大型语言模型(LLM)等资源密集型应用。
外部部署依赖支持
1.4版本扩展了bentoml.depends()的功能,使其能够支持外部部署依赖:
- 可以通过名称或URL调用BentoCloud部署
- 支持调用自托管的HTTP AI服务
- 简化分布式服务架构的实现
这一特性使得构建复杂的微服务架构变得更加容易,开发者可以轻松集成各种外部服务。
服务API演进
值得注意的是,1.4版本正式弃用了传统的bentoml.Service API(带runners的版本),并计划在未来版本中移除。官方推荐使用新的@bentoml.service装饰器来定义服务。
总结
BentoML 1.4通过引入Codespaces、优化模型加载、改进配置方式等一系列创新,为AI应用开发者提供了更高效、更灵活的工具链。这些改进不仅提升了开发体验,也为生产环境部署带来了更好的性能和可靠性。对于正在构建AI服务的团队来说,1.4版本无疑是一个值得升级的重要里程碑。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00