Pydantic Logfire项目:如何高效查询与分析追踪数据
2025-06-27 04:57:06作者:凤尚柏Louis
在机器学习与LLM应用开发过程中,有效收集和分析执行追踪数据对模型优化至关重要。Pydantic Logfire作为一款强大的追踪工具,提供了灵活的数据采集能力,但许多开发者对其数据查询功能存在使用困惑。本文将深入解析Logfire的数据访问机制,并提供专业级解决方案。
核心需求场景
当开发者使用Logfire收集LLM执行过程的追踪数据后,通常需要:
- 将原始追踪数据转换为结构化数据集
- 对历史执行记录进行统计分析
- 提取特定条件下的数据样本用于模型微调
数据访问方案详解
方案一:UI界面快速导出
虽然最新UI版本移除了直接的CSV导出按钮,但仍可通过以下方式获取数据:
- 在Explore视图的查询结果表格中全选数据
- 使用复制功能获取TSV格式的剪贴板数据
- 粘贴到文本编辑器或Excel中处理
方案二:数据库直连(推荐方案)
通过PostgreSQL协议直接连接底层数据库,实现编程式数据访问:
import psycopg
# 建立数据库连接(需配置认证信息)
conn = psycopg.connect('postgresql://user:password@host:port/database')
# 执行复杂查询
cursor = conn.cursor()
cursor.execute('''
SELECT operation_name, duration_ms
FROM spans
WHERE timestamp > NOW() - INTERVAL '7 days'
ORDER BY duration_ms DESC
''')
# 处理结果集
for operation, duration in cursor.fetchall():
print(f'{operation}: {duration}ms')
高级技巧
- 性能优化:对大型结果集使用游标分批获取
- 类型转换:结果集中的JSON字段可直接反序列化为Python对象
- 元数据查询:通过系统表获取追踪数据的Schema信息
最佳实践建议
- 生产环境:建议使用连接池管理数据库连接
- 分析场景:将查询结果转换为Pandas DataFrame(待功能完善)
- 安全考虑:严格控制数据库访问权限,避免暴露敏感信息
架构设计思考
Logfire采用将追踪数据存储在关系型数据库的设计,这种架构选择带来了:
- 优势:支持标准SQL查询,便于复杂分析
- 挑战:需要开发者具备基础SQL知识
未来版本可能会封装更友好的Python查询接口,降低使用门槛。目前掌握数据库直连技术是发挥Logfire全部潜力的关键。
通过本文介绍的方法,开发者可以充分利用Logfire收集的宝贵数据,为LLM应用的性能优化和质量提升提供数据支撑。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
374
仓颉编程语言运行时与标准库。
Cangjie
130
387
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205