Pydantic Logfire项目:如何高效查询与分析追踪数据
2025-06-27 16:12:40作者:凤尚柏Louis
在机器学习与LLM应用开发过程中,有效收集和分析执行追踪数据对模型优化至关重要。Pydantic Logfire作为一款强大的追踪工具,提供了灵活的数据采集能力,但许多开发者对其数据查询功能存在使用困惑。本文将深入解析Logfire的数据访问机制,并提供专业级解决方案。
核心需求场景
当开发者使用Logfire收集LLM执行过程的追踪数据后,通常需要:
- 将原始追踪数据转换为结构化数据集
- 对历史执行记录进行统计分析
- 提取特定条件下的数据样本用于模型微调
数据访问方案详解
方案一:UI界面快速导出
虽然最新UI版本移除了直接的CSV导出按钮,但仍可通过以下方式获取数据:
- 在Explore视图的查询结果表格中全选数据
- 使用复制功能获取TSV格式的剪贴板数据
- 粘贴到文本编辑器或Excel中处理
方案二:数据库直连(推荐方案)
通过PostgreSQL协议直接连接底层数据库,实现编程式数据访问:
import psycopg
# 建立数据库连接(需配置认证信息)
conn = psycopg.connect('postgresql://user:password@host:port/database')
# 执行复杂查询
cursor = conn.cursor()
cursor.execute('''
SELECT operation_name, duration_ms
FROM spans
WHERE timestamp > NOW() - INTERVAL '7 days'
ORDER BY duration_ms DESC
''')
# 处理结果集
for operation, duration in cursor.fetchall():
print(f'{operation}: {duration}ms')
高级技巧
- 性能优化:对大型结果集使用游标分批获取
- 类型转换:结果集中的JSON字段可直接反序列化为Python对象
- 元数据查询:通过系统表获取追踪数据的Schema信息
最佳实践建议
- 生产环境:建议使用连接池管理数据库连接
- 分析场景:将查询结果转换为Pandas DataFrame(待功能完善)
- 安全考虑:严格控制数据库访问权限,避免暴露敏感信息
架构设计思考
Logfire采用将追踪数据存储在关系型数据库的设计,这种架构选择带来了:
- 优势:支持标准SQL查询,便于复杂分析
- 挑战:需要开发者具备基础SQL知识
未来版本可能会封装更友好的Python查询接口,降低使用门槛。目前掌握数据库直连技术是发挥Logfire全部潜力的关键。
通过本文介绍的方法,开发者可以充分利用Logfire收集的宝贵数据,为LLM应用的性能优化和质量提升提供数据支撑。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0345- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
307
337

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58