Pydantic Logfire项目:如何高效查询与分析追踪数据
2025-06-27 20:24:46作者:凤尚柏Louis
在机器学习与LLM应用开发过程中,有效收集和分析执行追踪数据对模型优化至关重要。Pydantic Logfire作为一款强大的追踪工具,提供了灵活的数据采集能力,但许多开发者对其数据查询功能存在使用困惑。本文将深入解析Logfire的数据访问机制,并提供专业级解决方案。
核心需求场景
当开发者使用Logfire收集LLM执行过程的追踪数据后,通常需要:
- 将原始追踪数据转换为结构化数据集
- 对历史执行记录进行统计分析
- 提取特定条件下的数据样本用于模型微调
数据访问方案详解
方案一:UI界面快速导出
虽然最新UI版本移除了直接的CSV导出按钮,但仍可通过以下方式获取数据:
- 在Explore视图的查询结果表格中全选数据
- 使用复制功能获取TSV格式的剪贴板数据
- 粘贴到文本编辑器或Excel中处理
方案二:数据库直连(推荐方案)
通过PostgreSQL协议直接连接底层数据库,实现编程式数据访问:
import psycopg
# 建立数据库连接(需配置认证信息)
conn = psycopg.connect('postgresql://user:password@host:port/database')
# 执行复杂查询
cursor = conn.cursor()
cursor.execute('''
SELECT operation_name, duration_ms
FROM spans
WHERE timestamp > NOW() - INTERVAL '7 days'
ORDER BY duration_ms DESC
''')
# 处理结果集
for operation, duration in cursor.fetchall():
print(f'{operation}: {duration}ms')
高级技巧
- 性能优化:对大型结果集使用游标分批获取
- 类型转换:结果集中的JSON字段可直接反序列化为Python对象
- 元数据查询:通过系统表获取追踪数据的Schema信息
最佳实践建议
- 生产环境:建议使用连接池管理数据库连接
- 分析场景:将查询结果转换为Pandas DataFrame(待功能完善)
- 安全考虑:严格控制数据库访问权限,避免暴露敏感信息
架构设计思考
Logfire采用将追踪数据存储在关系型数据库的设计,这种架构选择带来了:
- 优势:支持标准SQL查询,便于复杂分析
- 挑战:需要开发者具备基础SQL知识
未来版本可能会封装更友好的Python查询接口,降低使用门槛。目前掌握数据库直连技术是发挥Logfire全部潜力的关键。
通过本文介绍的方法,开发者可以充分利用Logfire收集的宝贵数据,为LLM应用的性能优化和质量提升提供数据支撑。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492