在FastAPI、SQLModel和Postgres中集成Logfire的实践指南
2025-06-27 11:32:07作者:董宙帆
Logfire作为一款强大的日志和监控工具,能够为Python应用提供全面的可观测性支持。本文将详细介绍如何在FastAPI框架中,结合SQLModel和Postgres数据库,正确配置Logfire以实现完整的应用监控。
Logfire基础配置
在FastAPI应用中集成Logfire的第一步是进行基础配置。核心配置需要在应用初始化早期完成,这一点至关重要:
import logfire
from fastapi import FastAPI
logfire.configure(
token=settings.LOGFIRE_TOKEN,
pydantic_plugin=logfire.PydanticPlugin(record="all")
)
这里我们启用了Pydantic插件的完整记录功能,这将捕获所有Pydantic模型的相关操作。需要注意的是,配置必须在所有需要监控的模块导入之前完成,否则部分模型可能无法被正确监控。
数据库监控配置
对于使用SQLModel和Postgres的应用,需要特别注意数据库连接的监控配置。正确的做法是在创建数据库连接之前完成相关插件的初始化:
logfire.instrument_psycopg()
logfire.instrument_sqlalchemy()
# 之后才能初始化数据库连接
create_db_and_tables()
这种顺序确保了从数据库连接建立之初的所有操作都能被Logfire捕获。开发者可以根据实际情况选择监控psycopg或sqlalchemy,或者两者都监控以获得更全面的数据。
FastAPI应用监控
完成基础配置后,我们需要将Logfire与FastAPI应用本身集成:
app = FastAPI()
logfire.instrument_fastapi(app)
这一步骤会监控所有FastAPI的路由请求和响应,为开发者提供API调用的详细追踪信息。
Pydantic模型监控注意事项
当应用中使用Pydantic的BaseSettings进行配置管理时,需要特别注意:
- 确保Logfire配置在所有Pydantic模型定义之前完成
- BaseSettings的子类也会被自动监控
- 对于早期加载的配置模型,可能需要调整加载顺序
完整配置示例
结合上述要点,一个完整的配置示例如下:
import logfire
from fastapi import FastAPI
# 第一步:初始化Logfire
logfire.configure(
token=settings.LOGFIRE_TOKEN,
pydantic_plugin=logfire.PydanticPlugin(record="all")
)
# 第二步:初始化数据库监控
logfire.instrument_psycopg()
logfire.instrument_sqlalchemy()
logfire.instrument_httpx()
# 第三步:创建数据库连接
create_db_and_tables()
# 第四步:创建FastAPI应用并集成监控
app = FastAPI()
logfire.instrument_fastapi(app)
# 最后配置路由
app.include_router(api_router, prefix=settings.API_V1_STR)
监控效果验证
正确配置后,开发者应该能够在Logfire面板中看到:
- 所有API请求和响应的详细信息
- 数据库查询语句和执行时间
- HTTP客户端请求记录
- Pydantic模型的验证和序列化过程
通过这种全面的监控配置,开发者可以获得应用运行时的完整视图,无论是API性能、数据库查询效率还是模型处理过程,都能得到清晰的监控数据,为性能优化和问题排查提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
211
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212