DataProfiler 开源项目教程
2024-09-13 13:09:13作者:苗圣禹Peter
1. 项目介绍
DataProfiler 是一个由 Capital One 开发的 Python 库,旨在简化数据分析、监控和敏感数据检测的过程。该库通过单个命令即可加载数据,自动格式化并加载文件到 DataFrame 中。在数据分析过程中,DataProfiler 能够识别数据的结构、统计信息以及敏感数据(如 PII/NPI)。生成的数据概要可以用于下游应用程序或报告。
2. 项目快速启动
安装
首先,通过 pip 安装 DataProfiler:
pip install DataProfiler
快速启动示例
以下是一个简单的示例,展示如何使用 DataProfiler 加载和分析 CSV 文件:
import json
from dataprofiler import Data, Profiler
# 加载 CSV 文件
data = Data("your_file.csv")
# 打印前 5 行数据
print(data.data.head(5))
# 分析数据
profile = Profiler(data)
# 生成报告并使用 json 美化输出
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))
3. 应用案例和最佳实践
应用案例
敏感数据检测
DataProfiler 内置了一个深度学习模型,用于高效识别敏感数据(如 PII/NPI)。以下是一个示例,展示如何使用 DataProfiler 检测 CSV 文件中的敏感数据:
from dataprofiler import Data, Profiler
# 加载 CSV 文件
data = Data("sensitive_data.csv")
# 分析数据
profile = Profiler(data)
# 生成报告
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))
数据监控
DataProfiler 还可以用于数据监控,通过定期更新数据概要并比较不同时间点的概要,可以检测数据的变化和异常。
from dataprofiler import Data, Profiler
# 加载初始数据
data = Data("initial_data.csv")
profile = Profiler(data)
# 更新数据概要
new_data = Data("updated_data.csv")
profile.update_profile(new_data)
# 生成报告
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))
最佳实践
- 定期更新数据概要:通过定期更新数据概要,可以及时发现数据的变化和异常。
- 使用自定义数据标签:DataProfiler 允许用户训练自己的数据标签模型,以适应特定的业务需求。
- 分布式数据分析:DataProfiler 支持分布式数据分析,可以通过合并多个数据概要来分析大规模数据集。
4. 典型生态项目
Pandas
DataProfiler 与 Pandas 紧密集成,可以直接加载和分析 Pandas DataFrame。以下是一个示例:
import pandas as pd
from dataprofiler import Profiler
# 创建 Pandas DataFrame
df = pd.DataFrame([[1, 2, 0], [1, 2, 2], [-1, 3]])
# 分析 DataFrame
profile = Profiler(df)
# 生成报告
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))
Apache Avro 和 Parquet
DataProfiler 支持加载和分析 Apache Avro 和 Parquet 文件,以下是一个示例:
from dataprofiler import Data, Profiler
# 加载 Parquet 文件
data = Data("your_file.parquet")
# 分析数据
profile = Profiler(data)
# 生成报告
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))
通过以上内容,您可以快速上手 DataProfiler 并了解其在实际应用中的使用方法和最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895