TransFG 项目使用教程
2024-08-17 10:47:09作者:丁柯新Fawn
1. 项目的目录结构及介绍
TransFG 项目的目录结构如下:
TransFG/
├── models/
│ ├── __init__.py
│ ├── model.py
│ └── ...
├── utils/
│ ├── __init__.py
│ ├── utils.py
│ └── ...
├── LICENSE
├── README.md
├── TransFG.png
├── requirements.txt
├── train.py
└── ...
目录结构介绍
models/: 包含项目的模型定义文件。model.py: 定义了主要的 Transformer 模型。
utils/: 包含项目中使用的各种工具函数。utils.py: 包含辅助函数,如数据加载、预处理等。
LICENSE: 项目的许可证文件。README.md: 项目的说明文档。TransFG.png: 项目的相关图片。requirements.txt: 项目依赖的 Python 包列表。train.py: 项目的启动文件,用于训练模型。
2. 项目的启动文件介绍
项目的启动文件是 train.py,该文件负责模型的训练过程。以下是 train.py 的主要功能:
- 加载配置参数。
- 初始化数据加载器。
- 构建模型。
- 定义损失函数和优化器。
- 进行模型训练和验证。
启动文件代码示例
# train.py
import argparse
import os
import torch
from models import TransFGModel
from utils import get_data_loader, get_loss_function, get_optimizer
def main():
parser = argparse.ArgumentParser(description="Train TransFG Model")
parser.add_argument('--config', default='config.yaml', type=str, help='Path to the config file.')
args = parser.parse_args()
# Load configuration
config = load_config(args.config)
# Initialize data loader
train_loader, val_loader = get_data_loader(config)
# Build model
model = TransFGModel(config)
# Define loss function and optimizer
criterion = get_loss_function(config)
optimizer = get_optimizer(model.parameters(), config)
# Training loop
for epoch in range(config.epochs):
train(model, train_loader, criterion, optimizer, epoch, config)
validate(model, val_loader, criterion, epoch, config)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件通常是一个 YAML 或 JSON 文件,用于存储模型的超参数、数据路径、训练参数等。在 TransFG 项目中,配置文件的路径通过命令行参数 --config 指定。
配置文件示例
# config.yaml
data:
train_path: "path/to/train/data"
val_path: "path/to/val/data"
batch_size: 32
model:
num_classes: 200
learning_rate: 0.001
training:
epochs: 50
save_path: "checkpoints/"
配置文件参数介绍
data: 数据相关配置。train_path: 训练数据路径。val_path: 验证数据路径。batch_size: 批处理大小。
model: 模型相关配置。num_classes: 类别数量。learning_rate: 学习率。
training: 训练相关配置。epochs: 训练轮数。save_path: 模型保存路径。
通过以上配置文件,可以灵活地调整训练过程中的各项参数,以适应不同的训练需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
719
173
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1