NeuralForecast中使用静态外生变量的正确方法
2025-06-24 20:38:04作者:邬祺芯Juliet
静态外生变量在时间序列预测中的应用
在时间序列预测领域,外生变量是提升模型预测精度的重要手段。NeuralForecast作为一款强大的时间序列预测库,支持使用历史外生变量(hist_exog)和静态外生变量(stat_exog)来增强模型性能。本文将重点介绍如何正确使用静态外生变量。
静态外生变量的特点
静态外生变量是指那些在时间序列预测中不随时间变化的特征。这类变量通常包括:
- 产品ID
- 店铺ID
- 地理位置信息
- 产品类别
- 其他固定属性
与历史外生变量不同,静态外生变量在整个时间序列中保持不变,它们代表了时间序列本身的固有属性。
常见错误与解决方案
许多用户在使用NeuralForecast时会遇到类似错误:"static exogenous variables not found in input dataset"。这通常是由于没有正确设置静态外生变量的数据格式导致的。
错误原因分析
- 数据格式不正确:试图将静态变量直接包含在主时间序列数据框中
- 变量类型问题:静态变量必须是数值类型
- 数据重复:为每个时间点都提供了静态变量值
正确实现方法
正确的做法是创建一个独立的数据框来存储静态外生变量,并通过static_df
参数传递给模型。
# 主时间序列数据框
data = pd.DataFrame({
'unique_id': [1] * 100,
'ds': pd.date_range(start='2023-01-01', periods=100, freq='D'),
'y': np.random.rand(100),
'hist_exog1': np.random.rand(100) # 历史外生变量
})
# 静态外生变量数据框
static_df = pd.DataFrame({
'unique_id': 1, # 与主数据框中的unique_id对应
'product_id': 305, # 静态变量1
'store_type': 2 # 静态变量2
}, index=[0]) # 只需要一行数据
# 模型配置
nhits = NHITS(h=10,
input_size=20,
hist_exog_list=['hist_exog1'],
stat_exog_list=['product_id', 'store_type'])
# 训练模型
nf = NeuralForecast(models=[nhits], freq='D')
nf.fit(df=data, static_df=static_df)
最佳实践建议
- 数据预处理:确保静态变量已转换为数值形式,必要时使用标签编码
- 变量选择:选择真正具有预测价值的静态变量,避免维度灾难
- 内存优化:静态数据框只需包含每个unique_id的一行记录
- 模型验证:通过交叉验证评估静态变量的实际贡献
总结
正确使用静态外生变量可以显著提升时间序列模型的预测性能。关键在于理解静态变量的特性,并以正确的格式提供给NeuralForecast模型。通过分离静态变量到独立数据框,并确保其数值化和简洁性,可以避免常见的错误,充分发挥模型的预测能力。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
224
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
210
286

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
567
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0