Expensify/App中费用预览违规红点显示问题的技术解析
问题背景
在Expensify/App项目中,用户报告了一个关于费用预览界面中违规红点显示异常的问题。具体表现为:当用户在默认禁用工作流的首个工作区中创建手动费用时,虽然费用详情页面和左侧导航栏(LHN)能正确显示违规红点标记,但在费用预览界面却未能显示相应的违规提示。
技术分析
问题根源
经过深入分析,发现问题的核心在于两个关键因素:
-
违规类型配置不完整:在ViolationsUtils.ts文件中,'categoryOutOfPolicy'类型的违规默认将showInReview属性设置为false,导致这类违规不会在预览界面显示红点标记。
-
工作流状态判断逻辑:ReportPreviewActionUtils.ts文件中的逻辑会检查工作流是否启用,如果工作流被禁用,则直接返回false,阻止了违规红点的显示。
解决方案对比
开发团队提出了两种不同的解决方案思路:
-
直接修改违规类型配置:简单地将'categoryOutOfPolicy'违规的showInReview属性设置为true。这种方法直接但可能不够全面。
-
重构判断逻辑:创建新的工具函数来识别那些不需要工作流功能也能被审查的违规类型(如missingCategory、missingTag等),然后在判断逻辑中添加相应条件。这种方法更具扩展性和维护性。
最终团队选择了第二种方案,因为它能更好地适应未来可能新增的违规类型,同时保持了代码的清晰结构。
实现细节
具体实现包括:
- 在ViolationsUtils.ts中完善违规类型的showInReview配置
- 在ReportPreviewActionUtils.ts中优化工作流状态判断逻辑
- 确保不同界面(LHN、详情页、预览页)的违规提示显示一致性
测试验证
为确保修复效果,设计了以下测试场景:
- 使用默认禁用工作流的首个工作区
- 创建包含违规类别的费用记录
- 验证各界面(预览、详情、LHN)的红点显示一致性
- 特别关注类别违规在预览界面的可见性
经验总结
这个案例给我们带来几点重要启示:
-
初始设计考虑要全面:在定义违规类型时,应充分考虑其在各界面中的显示需求。
-
条件判断要细致:涉及功能开关的判断逻辑需要仔细评估其对用户体验的影响。
-
测试覆盖要完整:对于跨多界面的功能,需要设计端到端的测试场景。
-
解决方案要有前瞻性:选择更具扩展性的方案虽然初期成本较高,但长期维护成本更低。
通过这次问题的解决,Expensify/App在违规提示功能的用户体验和代码质量上都得到了提升,为后续类似功能的开发积累了宝贵经验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









