images-to-osm 项目使用教程
2024-09-25 07:58:40作者:范靓好Udolf
1. 项目目录结构及介绍
images-to-osm/
├── Mask_RCNN/
│ └── ...
├── QuadKey/
│ └── ...
├── imagestoosm/
│ └── ...
├── import/
│ └── phase1/
│ └── ...
├── sample-images/
│ └── ...
├── .gitignore
├── .gitmodules
├── LICENSE
├── README.md
├── createfinalosm.py
├── createosmanomaly.py
├── findsmallbaseball.py
├── getdatafromosm.py
├── gettilesfrombing.py
├── maketrainingimages.py
├── osmmodelconfig.py
├── requirements.txt
├── reviewosmanomaly.py
├── train.py
├── train_shapes.py
└── trainall.py
目录结构介绍
- Mask_RCNN/: 包含 Mask R-CNN 算法的实现代码。
- QuadKey/: 包含与 QuadKey 相关的代码。
- imagestoosm/: 包含将图像转换为 OSM 数据的代码。
- import/phase1/: 包含项目第一阶段的导入代码。
- sample-images/: 包含示例图像文件。
- .gitignore: Git 忽略文件配置。
- .gitmodules: Git 子模块配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- createfinalosm.py: 创建最终 OSM 文件的脚本。
- createosmanomaly.py: 创建 OSM 异常的脚本。
- findsmallbaseball.py: 查找小型棒球场的脚本。
- getdatafromosm.py: 从 OSM 获取数据的脚本。
- gettilesfrombing.py: 从 Bing 获取瓦片的脚本。
- maketrainingimages.py: 创建训练图像的脚本。
- osmmodelconfig.py: OSM 模型配置文件。
- requirements.txt: 项目依赖库配置文件。
- reviewosmanomaly.py: 审查 OSM 异常的脚本。
- train.py: 训练 Mask R-CNN 模型的脚本。
- train_shapes.py: 训练形状的脚本。
- trainall.py: 训练所有内容的脚本。
2. 项目启动文件介绍
trainall.py
trainall.py 是项目的启动文件,负责调用一系列脚本以完成整个训练流程。具体步骤如下:
getdatafromosm.py: 使用 Overpass API 下载体育场地的数据。gettilesfrombing.py: 使用 OSM 数据下载所需的 Bing 瓦片。maketrainingimages.py: 将 OSM 数据和 Bing 瓦片整合为一组训练图像和掩码。train.py: 实际运行 Mask R-CNN 算法的训练。
使用方法
python trainall.py
3. 项目的配置文件介绍
osmmodelconfig.py
osmmodelconfig.py 是项目的配置文件,包含了训练 Mask R-CNN 模型所需的各种参数配置。以下是一些关键配置项:
BATCH_SIZE: 训练批次大小。LEARNING_RATE: 学习率。EPOCHS: 训练轮数。DATA_DIR: 数据目录路径。MODEL_DIR: 模型保存路径。
使用方法
在 train.py 中导入并使用 osmmodelconfig.py 中的配置项:
from osmmodelconfig import config
# 使用配置项
batch_size = config.BATCH_SIZE
learning_rate = config.LEARNING_RATE
通过以上步骤,您可以顺利启动并配置 images-to-osm 项目,开始进行卫星图像特征检测和 OSM 数据更新。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.73 K
Ascend Extension for PyTorch
Python
332
396
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
166
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246