开源项目 `images-to-osm` 使用教程
2024-09-17 18:28:49作者:庞眉杨Will
1. 项目介绍
images-to-osm
是一个利用 Mask R-CNN 算法检测卫星图像中的特征,并将这些特征添加到 OpenStreetMap (OSM) 中的开源项目。该项目的主要目标是测试 Mask R-CNN 神经网络算法,并通过添加高质量的棒球场、足球场、网球场、橄榄球场和篮球场等体育设施来改进 OpenStreetMap。
Mask R-CNN 是由 Facebook AI Research (FAIR) 在 2017 年发布的,它在实例分割任务中表现出色。images-to-osm
项目基于 Matterport 公司提供的 Mask R-CNN 实现,使用 Keras 和 TensorFlow 进行开发。
2. 项目快速启动
2.1 环境配置
首先,确保你已经安装了以下依赖:
- Ubuntu 17.10 或更高版本
- Python 3.6
- TensorFlow 1.3+
- Keras 2.0.8+
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/jremillard/images-to-osm.git cd images-to-osm
-
创建虚拟环境并激活:
python3 -m venv venv source venv/bin/activate
-
安装项目依赖:
pip install -r requirements.txt
-
创建
secrets.py
文件并添加 Bing 地图 API 密钥:bingKey = "your_bing_api_key"
2.3 运行项目
-
下载 OSM 数据并获取 Bing 地图瓦片:
python getdatafromosm.py python gettilesfrombing.py
-
生成训练图像和掩码:
python maketrainingimages.py
-
训练 Mask R-CNN 模型:
python train.py
-
将结果转换为 OSM 文件:
python createosmanomaly.py python reviewosmanomaly.py python createfinalosm.py
3. 应用案例和最佳实践
3.1 应用案例
images-to-osm
项目可以用于自动检测和添加体育设施到 OpenStreetMap 中。例如,在城市规划中,可以通过该项目快速识别和标记城市中的体育设施,帮助规划者更好地了解城市的基础设施分布。
3.2 最佳实践
- 数据质量:确保 OSM 数据的质量,因为数据质量直接影响模型的训练效果。
- 模型优化:根据实际需求调整模型参数,以提高检测精度。
- 用户交互:在
reviewosmanomaly.py
中进行人工审核,确保添加到 OSM 中的数据准确无误。
4. 典型生态项目
- OpenStreetMap:该项目的主要目标是为 OpenStreetMap 添加高质量的地理数据。
- Mask R-CNN:基于 Facebook AI Research 的 Mask R-CNN 实现,用于图像分割任务。
- Matterport Mask R-CNN:提供了 Mask R-CNN 的 Python 实现,是
images-to-osm
项目的基础。
通过以上步骤,你可以快速启动并使用 images-to-osm
项目,为 OpenStreetMap 贡献高质量的地理数据。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0230PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。01- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
132
1.89 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
273

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
70
63

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
379
389

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.24 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
915
548

openGauss kernel ~ openGauss is an open source relational database management system
C++
144
189

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15