Kysely中使用VALUES子句实现数据过滤查询
2025-05-19 04:58:13作者:冯梦姬Eddie
在数据库操作中,我们经常需要处理一组预定义值与数据库中现有数据的对比查询。本文将介绍如何在Kysely这个TypeScript SQL查询构建器中,优雅地实现这种查询模式。
问题场景
假设我们需要检查一组Spotify ID(如'123'、'456'、'789')中哪些ID尚未存在于数据库的search_result表中。在原生SQL中,我们通常会使用VALUES子句创建一个临时表,然后通过LEFT JOIN和IS NULL条件来筛选出不存在的数据:
SELECT t.spotify_id
FROM (VALUES ('123'),('456'),('789')) AS t(spotify_id)
LEFT JOIN search_result sr ON sr.spotify_id = t.spotify_id
WHERE sr.spotify_id IS NULL;
Kysely实现方案
在Kysely中,我们需要采用稍微不同的方法来实现相同的功能。以下是完整的解决方案:
1. 创建VALUES临时表
首先,我们需要创建一个扩展Kysely的方法来方便地生成VALUES子句:
function values<R extends Record<string, unknown>, A extends string>(
records: R[],
alias: A
): ValuesNode<R, A> {
return new ValuesNode(records, alias)
}
class ValuesNode<R extends Record<string, unknown>, A extends string> {
readonly #records: R[]
readonly #alias: A
constructor(records: R[], alias: A) {
this.#records = records
this.#alias = alias
}
toOperationNode(): ValuesNodeOperation {
return {
kind: 'ValuesNode',
records: this.#records,
alias: this.#alias,
}
}
}
2. 构建完整查询
有了上述辅助方法后,我们可以构建完整的查询:
const batch = ['123', '456', '789'];
const valuesTable = values(
batch.map((id) => ({ spotify_id: id })),
't' // 表别名
);
const query = db
.with('t', (db) => db.selectFrom(valuesTable).selectAll())
.selectFrom('t')
.leftJoin('search_result as sr', (join) =>
join.onRef('t.spotify_id', '=', 'sr.spotify_id')
)
.where('sr.spotify_id', 'is', null)
.select('t.spotify_id');
实现原理
这种方法的核心在于:
- 使用VALUES子句创建一个临时内存表,包含我们想要检查的所有Spotify ID
- 通过WITH子句将这个临时表命名为't'
- 使用LEFT JOIN将临时表与数据库中的search_result表关联
- 通过WHERE条件筛选出search_result表中不存在的记录
优势分析
相比直接在SQL中拼接字符串,这种Kysely实现方式具有以下优势:
- 类型安全:所有字段都有明确的TypeScript类型定义
- 防止SQL注入:通过参数化查询自动处理
- 可维护性:代码结构清晰,易于理解和修改
- 可组合性:可以方便地与其他Kysely查询组合使用
总结
在Kysely中处理预定义值与数据库记录的对比查询,虽然与原生SQL略有不同,但通过扩展Kysely并利用其强大的查询构建能力,我们依然能够实现优雅且类型安全的解决方案。这种方法不仅适用于Spotify ID的检查,也可以推广到其他类似的数据过滤场景中。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3