Kysely中使用VALUES子句实现数据过滤查询
2025-05-19 23:07:39作者:冯梦姬Eddie
在数据库操作中,我们经常需要处理一组预定义值与数据库中现有数据的对比查询。本文将介绍如何在Kysely这个TypeScript SQL查询构建器中,优雅地实现这种查询模式。
问题场景
假设我们需要检查一组Spotify ID(如'123'、'456'、'789')中哪些ID尚未存在于数据库的search_result表中。在原生SQL中,我们通常会使用VALUES子句创建一个临时表,然后通过LEFT JOIN和IS NULL条件来筛选出不存在的数据:
SELECT t.spotify_id
FROM (VALUES ('123'),('456'),('789')) AS t(spotify_id)
LEFT JOIN search_result sr ON sr.spotify_id = t.spotify_id
WHERE sr.spotify_id IS NULL;
Kysely实现方案
在Kysely中,我们需要采用稍微不同的方法来实现相同的功能。以下是完整的解决方案:
1. 创建VALUES临时表
首先,我们需要创建一个扩展Kysely的方法来方便地生成VALUES子句:
function values<R extends Record<string, unknown>, A extends string>(
records: R[],
alias: A
): ValuesNode<R, A> {
return new ValuesNode(records, alias)
}
class ValuesNode<R extends Record<string, unknown>, A extends string> {
readonly #records: R[]
readonly #alias: A
constructor(records: R[], alias: A) {
this.#records = records
this.#alias = alias
}
toOperationNode(): ValuesNodeOperation {
return {
kind: 'ValuesNode',
records: this.#records,
alias: this.#alias,
}
}
}
2. 构建完整查询
有了上述辅助方法后,我们可以构建完整的查询:
const batch = ['123', '456', '789'];
const valuesTable = values(
batch.map((id) => ({ spotify_id: id })),
't' // 表别名
);
const query = db
.with('t', (db) => db.selectFrom(valuesTable).selectAll())
.selectFrom('t')
.leftJoin('search_result as sr', (join) =>
join.onRef('t.spotify_id', '=', 'sr.spotify_id')
)
.where('sr.spotify_id', 'is', null)
.select('t.spotify_id');
实现原理
这种方法的核心在于:
- 使用VALUES子句创建一个临时内存表,包含我们想要检查的所有Spotify ID
- 通过WITH子句将这个临时表命名为't'
- 使用LEFT JOIN将临时表与数据库中的search_result表关联
- 通过WHERE条件筛选出search_result表中不存在的记录
优势分析
相比直接在SQL中拼接字符串,这种Kysely实现方式具有以下优势:
- 类型安全:所有字段都有明确的TypeScript类型定义
- 防止SQL注入:通过参数化查询自动处理
- 可维护性:代码结构清晰,易于理解和修改
- 可组合性:可以方便地与其他Kysely查询组合使用
总结
在Kysely中处理预定义值与数据库记录的对比查询,虽然与原生SQL略有不同,但通过扩展Kysely并利用其强大的查询构建能力,我们依然能够实现优雅且类型安全的解决方案。这种方法不仅适用于Spotify ID的检查,也可以推广到其他类似的数据过滤场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250