Autoware项目中TensorRT库路径配置问题的解决方案
2025-05-24 07:40:29作者:房伟宁
问题背景
在构建Autoware项目时,开发者可能会遇到TensorRT库无法被正确识别的问题,特别是在使用tar包方式安装TensorRT而非deb包的情况下。系统会报错"cuda, cudnn, tensorrt libraries are not found",即使已经设置了LD_LIBRARY_PATH环境变量。
环境配置要点
-
版本兼容性:Autoware项目推荐使用CUDA 12.3版本,与TensorRT 8.6.1.6配合使用。开发者尝试过多种版本组合,包括:
- CUDA 12.3 + cuDNN 8.9 + TensorRT 8.6
- CUDA 11.8 + cuDNN 8.8 + TensorRT 8.6
-
路径设置:使用tar包安装TensorRT后,仅设置LD_LIBRARY_PATH是不够的:
export LD_LIBRARY_PATH=/opt/TensorRT-8.6.1.6/lib:$LD_LIBRARY_PATH
根本原因分析
通过修改CMakeLists.txt文件检查发现,问题出在TENSORRT_FOUND变量为false。这表明CMake系统无法定位TensorRT的安装位置,即使LD_LIBRARY_PATH已正确设置。
完整解决方案
对于使用tar包安装TensorRT的情况,需要额外设置TENSORRT_ROOT环境变量:
export TENSORRT_ROOT=/opt/TensorRT-8.6.1.6
请将此路径替换为实际的TensorRT安装路径。这个变量帮助构建系统定位TensorRT的头文件和库文件。
最佳实践建议
-
推荐安装方式:使用deb包安装TensorRT可以避免此类问题,系统会自动处理所有路径配置。
-
环境验证:安装后可通过以下命令验证TensorRT相关包是否安装成功:
dpkg -l | grep nvinfer -
容器化方案:对于复杂的开发环境,建议使用Docker容器,可以确保环境的一致性和可重复性。
总结
在Autoware项目开发中,正确配置TensorRT环境对于深度学习相关功能的构建至关重要。通过设置TENSORRT_ROOT环境变量,可以解决tar包安装方式下的库路径识别问题。对于新手开发者,建议优先考虑使用deb包安装或Docker容器,以减少环境配置的复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355