数据约束语言模型的规模化研究
2024-09-24 10:48:44作者:瞿蔚英Wynne
项目介绍
本项目源自Hugging Face的datablations
仓库,致力于探索数据受限环境下语言模型的规模扩展。研究通过一系列大规模实验,分析数据重复程度与计算预算对模型性能的影响,直至达到900亿训练令牌和90亿参数模型的范围。项目不仅提出了一种考虑重复令牌价值减少和多余参数的计算优化定律,而且探讨了缓解数据稀缺性的策略,包括利用代码数据增强、困惑度过滤和去重等方法。所有相关模型和数据集可以通过此仓库获取。
项目快速启动
要快速启动并体验datablations
项目,你需要先安装必要的依赖,比如Hugging Face的Transformers库。以下是一个基础的初始化流程:
安装Transformer库
首先,确保你的环境中已安装Python,并通过pip安装Transformers:
pip install transformers
下载预处理数据
以C4数据集为例,你可以直接从Hugging Face的datasets库下载特定的预处理子集:
from datasets import load_dataset
# 虽然具体命令需依据实际发布的命令调整
# 假设这里有直接下载子集的方法
# 示例仅供参考,实际命令应指向提供的链接
# dataset = load_dataset('datablations/c4-subsets', '1B9_unique_tokens')
# 注意实际使用时查看最新文档或仓库中的具体指令
运行一个简单的模型训练(示例)
由于实际的训练脚本和配置不在上述引用中直接提供,此处仅示意性展示如何使用Transformers库进行模型训练的基本结构:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
# 假定模型和 tokenizer 的名称
model_name = "your_pretrained_model_name"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# 加载你的数据(这里假设你已经处理好了数据)
train_dataset = ...
eval_dataset = ...
# 训练参数
training_args = TrainingArguments(
output_dir='./results', # 输出目录
num_train_epochs=3, # 总的训练轮次
per_device_train_batch_size=16, # 每个GPU的训练批次大小
per_device_eval_batch_size=64, # 每个GPU的评估批次大小
warmup_steps=500, # 预热步数
weight_decay=0.01, # 权重衰减
logging_dir='./logs', # 日志目录
)
# 创建Trainer并开始训练
trainer = Trainer(
model=model, # 要训练的模型
args=training_args, # 训练参数
train_dataset=train_dataset, # 训练数据集
eval_dataset=eval_dataset # 评估数据集
)
trainer.train()
请注意,上述代码仅为一个高度简化的框架,实际使用时你需要根据项目提供的详细指导来定制化数据加载、预处理步骤以及模型的具体配置。
应用案例和最佳实践
在datablations
项目中,最佳实践通常涉及针对性地选择数据重复策略、根据模型规模适当增广数据、利用困惑度过滤来提升数据质量,以及通过精确的计算资源分配实现模型效率的最大化。例如,对于特定任务,结合项目中提到的数据增强技术可以显著提高在数据有限环境下的模型表现。
典型生态项目
- 集成Hugging Face Model Hub:利用Hugging Face Model Hub中的模型作为基础,结合本项目中提出的训练技巧和数据处理方法,可以快速构建和优化自定义的语言模型。
- 联合使用Megatron-DeepSpeed:本项目中提及的数据预处理方式与Megatron-DeepSpeed的分布式训练框架相结合,适用于构建超大规模的语言模型,实现高效计算和内存管理。
- 数据增强与过滤工具:项目提供了如代码数据混合、基于困惑度的筛选等工具,这些都是构建特定领域高质量语料库的关键组件,适用于多个自然语言处理任务的生态中。
为了深入实践这些概念,建议参考项目官方文档和GitHub仓库中的详细指南,因为那里会有最新的脚本、配置文件和实验设置说明。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133