在Langchain-ChatGLM项目中配置Searx搜索引擎的实践指南
2025-05-04 09:04:19作者:丁柯新Fawn
背景介绍
Langchain-ChatGLM是一个基于大型语言模型的开源项目,它允许用户通过配置不同的工具和组件来扩展其功能。其中,搜索引擎的集成是一个重要功能,能够为语言模型提供实时、准确的网络信息。
Searx搜索引擎简介
Searx是一个开源的元搜索引擎,它聚合了来自多个搜索引擎的结果,同时保护用户隐私。与直接使用商业搜索引擎相比,Searx具有以下优势:
- 不跟踪用户搜索行为
- 可以自定义搜索源
- 支持自托管部署
- 提供API接口供其他程序调用
配置步骤详解
要在Langchain-ChatGLM项目中配置本地部署的Searx作为搜索引擎,需要进行以下步骤:
1. 部署Searx服务
首先需要在本地或服务器上部署Searx服务。这通常涉及:
- 安装Docker或直接安装Searx
- 配置Searx实例
- 设置访问端口和转发规则
2. 修改tool_settings.yaml文件
在Langchain-ChatGLM项目的配置文件中,需要添加或修改search_internet部分的配置:
search_internet:
use: true
search_engine_name: "searx"
search_engine_config:
searx:
host: "http://localhost:8080" # 替换为实际端口
engines: []
categories: []
language: "zh-CN"
top_k: 5
verbose: "Origin"
3. 关键配置参数说明
- host: 指定Searx服务的访问地址,注意必须使用HTTP协议而非HTTPS
- engines: 可以指定Searx使用的底层搜索引擎列表,留空则使用默认
- categories: 可指定搜索类别,如general、news等
- language: 设置搜索语言,中文建议使用"zh-CN"
- top_k: 控制返回结果的数量
- verbose: 设置输出详细程度
常见问题解决方案
在实际配置过程中,可能会遇到以下问题:
-
连接失败问题:
- 确保Searx服务已正确启动
- 检查防火墙设置,确保端口可访问
- 验证配置中的主机地址和端口是否正确
-
协议问题:
- 本地部署时通常使用HTTP而非HTTPS
- 生产环境应考虑配置HTTPS以提高安全性
-
语言设置问题:
- 确保语言代码正确,中文应使用"zh-CN"
- 检查Searx服务是否支持所选语言
最佳实践建议
-
性能优化:
- 根据实际需求调整top_k参数,平衡结果数量与响应速度
- 可以指定特定的搜索引擎组合以提高结果相关性
-
安全性考虑:
- 生产环境应考虑添加认证机制
- 定期更新Searx实例以获取最新功能和安全补丁
-
监控与维护:
- 建立监控机制确保Searx服务可用性
- 定期检查搜索结果质量,必要时调整配置
总结
通过将Searx集成到Langchain-ChatGLM项目中,用户可以获得一个隐私友好、可定制化的搜索解决方案。这种集成不仅增强了语言模型获取实时信息的能力,还为用户提供了更大的控制权和灵活性。正确的配置和持续的优化能够确保搜索功能稳定高效地运行,为整个系统提供可靠的外部信息支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1