SimpleShot 项目使用教程
2024-09-26 02:47:42作者:卓炯娓
1. 项目目录结构及介绍
SimpleShot 项目的目录结构如下:
simple_shot/
├── configs/
│ ├── mini/
│ └── tiered/
├── results/
│ ├── protonet/
│ │ └── conv4/
│ └── split/
│ ├── mini/
│ └── tiered/
├── src/
│ ├── utils/
│ └── train.py
├── LICENSE
└── README.md
目录结构介绍
- configs/: 包含项目的配置文件,分为
mini和tiered两个子目录,分别对应不同的数据集配置。 - results/: 存储训练结果和模型文件,
protonet/conv4/目录下包含基于conv4骨干网络的prototypical network模型结果。 - src/: 项目的主要代码文件,包含训练和测试脚本,以及一些工具函数。
- LICENSE: 项目的开源许可证文件,采用 MIT 许可证。
- README.md: 项目的介绍文档,包含项目的基本信息和使用说明。
2. 项目的启动文件介绍
项目的启动文件主要位于 src/ 目录下,主要包括以下几个文件:
- train.py: 用于训练模型的主脚本。可以通过命令行参数指定配置文件和数据路径,启动训练过程。
- test_inatural.py: 用于在
iNat2017数据集上进行测试的脚本。 - utils/: 包含一些辅助函数和工具脚本,例如数据集处理和模型下载等。
启动文件使用示例
# 训练 Conv-4 模型在 Mini-ImageNet 数据集上
python src/train.py -c configs/mini/softmax/conv4_config --data path-to-mini-imagenet/
# 在 Mini-ImageNet 数据集上评估模型
python src/train.py -c configs/mini/softmax/conv4_config --evaluate --enlarge --data path-to-mini-imagenet/
3. 项目的配置文件介绍
配置文件位于 configs/ 目录下,分为 mini 和 tiered 两个子目录,分别对应不同的数据集配置。每个配置文件定义了模型的训练参数、数据路径和其他相关设置。
配置文件示例
以 configs/mini/softmax/conv4_config 为例:
# 配置文件示例
dataset: mini
model: conv4
batch_size: 64
learning_rate: 0.001
epochs: 100
data_path: path-to-mini-imagenet/
配置文件说明
- dataset: 指定数据集类型,如
mini或tiered。 - model: 指定使用的模型,如
conv4。 - batch_size: 训练时的批量大小。
- learning_rate: 学习率。
- epochs: 训练的轮数。
- data_path: 数据集的路径。
通过修改配置文件中的参数,可以调整模型的训练行为和数据处理方式。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669