OpenLLMetry项目中的自定义图片上传器功能解析
2025-06-06 19:19:07作者:钟日瑜
在OpenLLMetry项目中,开发者damianr13提出了一个关于Anthropic Instrumentation组件的功能增强需求,希望能够允许用户实现自定义的图片上传器。这一功能对于使用Anthropic API进行视觉任务处理的开发者来说具有重要意义。
需求背景
在实际应用中,许多开发者已经建立了自己的图片上传和存储系统。当这些开发者使用OpenLLMetry进行API调用追踪时,系统默认会将图片上传到Traceloop的存储服务。这就导致了两个问题:
- 数据冗余:图片需要在开发者自己的存储系统和Traceloop系统中各存一份
- 映射管理:开发者需要维护自己存储的URL和Traceloop存储URL之间的映射关系
特别是在后续进行模型微调时,开发者更希望所有数据都集中在自己平台上,而不是分散在多个系统中。
技术实现方案
目前,开发者可以通过以下方式实现自定义图片上传器:
Traceloop.init()
anthropic_instrumentor = AnthropicInstrumentor(
upload_base64_image=AnthropicTraceloopImageHandler().aupload_base64_image
)
if anthropic_instrumentor.is_instrumented_by_opentelemetry:
anthropic_instrumentor.uninstrument()
anthropic_instrumentor.instrument()
但这种实现方式存在以下不足:
- 需要手动解除和重新应用instrumentation
- 代码不够直观和简洁
理想的实现方式应该是:
Traceloop.init(image_uploader=AnthropicTraceloopImageHandler())
自定义图片上传器实现示例
开发者提供了一个自定义图片上传器的实现示例:
from traceloop.sdk.images.image_uploader import ImageUploader
from api.pricing.decorators import singleton
from logging import getLogger
logger = getLogger(__name__)
@singleton
class AnthropicTraceloopImageHandler(ImageUploader):
def __init__(self):
super().__init__(None, None)
self.url_cache = {}
def register_image_url(self, trace_id: int, image_b64: str, url: str):
if trace_id not in self.url_cache:
self.url_cache[trace_id] = {}
self.url_cache[trace_id][image_b64] = url
def release_images(self, trace_id: int):
self.url_cache.pop(trace_id, None)
async def aupload_base64_image(self, trace_id, span_id, image_name, image_file):
try:
return self.url_cache.get(trace_id).get(image_file)
except KeyError as e:
logger.warning(f"Could not find image for the trace {trace_id}", exc_info=e)
return "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTNNLEL-qmmLeFR1nxJuepFOgPYfnwHR56vcw&s"
这个实现展示了如何:
- 继承ImageUploader基类
- 使用缓存机制管理图片URL
- 提供图片注册和释放接口
- 实现异步上传方法
技术价值分析
这一功能增强将为OpenLLMetry项目带来以下技术价值:
- 灵活性提升:开发者可以无缝集成现有的图片存储系统
- 性能优化:避免了重复上传图片的网络开销
- 数据一致性:确保所有数据都存储在开发者控制的平台上
- 简化开发:通过更简洁的API接口降低使用复杂度
总结
OpenLLMetry项目中自定义图片上传器功能的实现,体现了开源项目对开发者实际需求的关注。这一功能不仅解决了数据冗余和管理复杂性的问题,还为后续的模型微调工作提供了更好的数据管理方案。通过简洁的API设计和灵活的扩展机制,OpenLLMetry进一步提升了其在AI应用开发工具链中的实用价值。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5