解决 lint-staged 在 Next.js 15 中的配置问题
在 monorepo 环境中使用 lint-staged 配合 Next.js 15 时,开发者可能会遇到一个常见问题:ESLint 检查虽然执行成功,但实际上并没有对代码进行任何修复操作。本文将深入分析这个问题的成因,并提供可靠的解决方案。
问题现象
当开发者在 Next.js 15 项目中配置 lint-staged 时,按照官方推荐的方式设置后,会发现以下情况:
- 命令执行成功,没有报错
 - 终端显示 lint 检查通过
 - 但代码中的 ESLint 问题实际上并未被修复
 
问题根源
经过分析,这个问题主要与 Next.js 15 的 lint 命令在 monorepo 环境中的工作方式有关。在 monorepo 结构中,项目路径层级较深,Next.js 的 lint 命令可能无法正确识别当前工作目录。
默认情况下,当使用 next lint --fix --file 命令时,如果没有明确指定工作目录(--dir 参数),Next.js 可能无法正确定位到项目的根目录,导致 lint 修复操作实际上没有执行。
解决方案
修改 lint-staged 配置文件,在 Next.js lint 命令中显式指定工作目录:
const path = require('path');
const buildEslintCommand = (filenames) =>
  `next lint --fix --dir . --file ${filenames.map((f) => path.relative(process.cwd(), f)).join(' --file ')}`;
module.exports = {
  '*.{ts,tsx}': ['prettier --write', buildEslintCommand],
};
关键修改点是在命令中添加了 --dir . 参数,明确告诉 Next.js 在当前目录下执行 lint 操作。
技术原理
- 
--dir .参数的作用:这个参数明确指定了 Next.js 应该在当前工作目录(即 monorepo 中的子项目目录)下执行 lint 操作,而不是尝试从 monorepo 根目录查找配置。 - 
路径解析:
path.relative(process.cwd(), f)确保了文件路径是相对于当前工作目录的相对路径,这对于 monorepo 中的子项目特别重要。 - 
执行上下文:lint-staged 会自动将命令的执行上下文设置为包含配置文件的目录(即 Next.js 项目目录),但 Next.js 的 lint 命令需要显式知道这一点才能正确工作。
 
最佳实践建议
- 
版本兼容性检查:这个问题在 Next.js 15 的候选版本中出现,建议检查使用的 Next.js 版本是否稳定。
 - 
monorepo 配置:在 monorepo 中,每个子项目应该有自己独立的 lint-staged 配置,而不是依赖根目录配置。
 - 
调试技巧:当遇到类似问题时,可以使用
--debug参数运行 lint-staged 来获取详细日志,帮助诊断问题。 - 
命令顺序:保持
prettier --write在 ESLint 之前运行,可以避免格式问题干扰 ESLint 的检查。 
总结
在 monorepo 中使用 lint-staged 和 Next.js 时,明确指定工作目录是确保 ESLint 修复功能正常工作的关键。这个小技巧可以节省开发者大量的调试时间,确保代码质量工具链的顺畅运行。随着 Next.js 版本的迭代,这个问题可能会在未来的版本中得到官方修复,但在当前版本中,添加 --dir . 参数是最可靠的解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00