解决lint-staged中tsc命令无法正确识别tsconfig的问题
问题背景
在使用lint-staged进行代码提交前的类型检查时,许多开发者会遇到一个奇怪的现象:当直接在lint-staged配置中使用tsc命令时,TypeScript编译器会错误地将每个待检查文件路径后追加/tsconfig.json,导致无法正确找到项目的TypeScript配置文件。
问题现象
开发者通常会在package.json中这样配置lint-staged:
"lint-staged": {
"*.{ts,tsx}": [
"npx tsc -b --verbose"
]
}
运行后会发现tsc报错,提示类似packages/components/tabs/src/TabsGroup.stories.tsx/tsconfig.json这样的路径找不到。这是因为lint-staged默认会将匹配到的文件列表附加到命令后面。
问题原因
lint-staged的设计初衷是对暂存区的文件逐个进行处理,因此默认情况下它会将匹配到的文件列表作为参数传递给配置的命令。这对于大多数linter工具(如ESLint、Stylelint)是合理的,因为这些工具通常支持接收文件列表作为参数。
但对于TypeScript编译器(tsc)来说,这种行为会导致问题,因为:
- tsc期望的是项目级别的类型检查,而不是单个文件
- tsc会自动在文件路径后追加tsconfig.json查找配置
- 项目通常有复杂的tsconfig继承关系
解决方案
方案一:使用函数式配置
lint-staged支持函数式配置,可以避免自动附加文件列表:
// lint-staged.config.js
module.exports = {
'*.{ts,tsx}': () => [
'tsc --noEmit',
'yarn run prettier:fix',
'yarn run lint:fix'
]
}
这种方式下,lint-staged不会自动附加文件列表,tsc会按照预期工作,使用项目根目录的tsconfig.json。
方案二:使用shell脚本包装
如果由于某些原因必须使用package.json配置,可以创建一个shell脚本来包装tsc命令:
#!/bin/sh
tsc --noEmit
然后在package.json中引用:
"lint-staged": {
"*.{ts,tsx}": ["./scripts/typecheck.sh"]
}
最佳实践建议
-
优先使用函数式配置:这是最简洁的解决方案,推荐在新的项目中使用
-
考虑项目结构:对于monorepo项目,可能需要更复杂的配置来确保tsc能找到正确的配置文件
-
结合其他工具:通常tsc类型检查会与其他工具(prettier、eslint等)一起使用,可以统一配置
-
注意性能:全量类型检查可能较慢,对于大型项目可以考虑增量编译或其他优化手段
总结
理解lint-staged的工作机制对于正确配置至关重要。通过使用函数式配置,我们可以避免tsc命令被错误地传递文件列表参数,确保TypeScript类型检查能够正常工作。这一解决方案不仅适用于简单的项目,也能很好地支持复杂的monorepo架构。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C027
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00