JeecgBoot项目Shiro加密异常问题分析与解决方案
问题现象
在JeecgBoot 3.7.3版本(Spring Boot 3分支)中,本地启动时出现Shiro加密相关的异常。系统日志显示以下错误信息:
org.apache.shiro.crypto.CryptoException: Unable to correctly extract the Initialization Vector or ciphertext.
进一步查看堆栈跟踪,可以发现这是由于CookieRememberMeManager在尝试获取记住的凭证时发生的解密失败。错误根源是一个ArrayIndexOutOfBoundsException,表明在解密过程中数组拷贝操作超出了边界。
问题原因分析
这个问题的根本原因在于Shiro的CookieRememberMeManager组件在解密rememberMe cookie时出现了异常。具体来说:
-
加密机制问题:Shiro默认使用AES加密算法来加密rememberMe cookie,需要正确的初始向量(IV)和密钥。
-
Cookie数据损坏:当浏览器中的rememberMe cookie损坏或不完整时,解密过程会失败。
-
密钥不一致:如果服务器重启后加密密钥发生变化,之前生成的cookie将无法解密。
-
数组越界:从错误堆栈看,系统尝试从长度为3的字节数组中拷贝16个字节的数据,这显然是不可能的。
解决方案
针对这个问题,有以下几种解决方法:
1. 清除浏览器Cookie
最简单的解决方法是清除浏览器中与当前应用相关的所有cookie。这将移除可能损坏的rememberMe cookie,让系统生成新的有效cookie。
2. 配置固定加密密钥
在application.yml或application.properties中配置固定的加密密钥:
shiro:
rememberMe:
cipherKey: 你的固定密钥(建议32位以上)
3. 禁用rememberMe功能
如果不需要记住我功能,可以直接在配置中禁用:
shiro:
rememberMe:
enabled: false
4. 自定义RememberMeManager
实现自定义的RememberMeManager,覆盖默认的解密逻辑:
public class CustomRememberMeManager extends CookieRememberMeManager {
@Override
protected byte[] decrypt(byte[] encrypted) {
try {
return super.decrypt(encrypted);
} catch (CryptoException e) {
// 处理解密失败的情况
return null;
}
}
}
然后在Shiro配置中使用这个自定义实现。
最佳实践建议
-
生产环境:务必配置固定的加密密钥,避免服务器重启后无法解密之前的cookie。
-
开发环境:可以考虑定期清除cookie或使用无痕模式开发,减少此类问题发生。
-
错误处理:在自定义RememberMeManager中增加更健壮的错误处理逻辑。
-
密钥管理:加密密钥应该足够复杂,建议使用32位以上的随机字符串。
总结
JeecgBoot项目中出现的这个Shiro加密异常主要是由于rememberMe cookie解密失败导致的。通过清除浏览器cookie、配置固定密钥或禁用该功能都可以解决问题。在开发和生产环境中,采取适当的配置和错误处理策略可以避免此类问题的发生。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00