JeecgBoot项目Shiro加密异常问题分析与解决方案
问题现象
在JeecgBoot 3.7.3版本(Spring Boot 3分支)中,本地启动时出现Shiro加密相关的异常。系统日志显示以下错误信息:
org.apache.shiro.crypto.CryptoException: Unable to correctly extract the Initialization Vector or ciphertext.
进一步查看堆栈跟踪,可以发现这是由于CookieRememberMeManager在尝试获取记住的凭证时发生的解密失败。错误根源是一个ArrayIndexOutOfBoundsException,表明在解密过程中数组拷贝操作超出了边界。
问题原因分析
这个问题的根本原因在于Shiro的CookieRememberMeManager组件在解密rememberMe cookie时出现了异常。具体来说:
-
加密机制问题:Shiro默认使用AES加密算法来加密rememberMe cookie,需要正确的初始向量(IV)和密钥。
-
Cookie数据损坏:当浏览器中的rememberMe cookie损坏或不完整时,解密过程会失败。
-
密钥不一致:如果服务器重启后加密密钥发生变化,之前生成的cookie将无法解密。
-
数组越界:从错误堆栈看,系统尝试从长度为3的字节数组中拷贝16个字节的数据,这显然是不可能的。
解决方案
针对这个问题,有以下几种解决方法:
1. 清除浏览器Cookie
最简单的解决方法是清除浏览器中与当前应用相关的所有cookie。这将移除可能损坏的rememberMe cookie,让系统生成新的有效cookie。
2. 配置固定加密密钥
在application.yml或application.properties中配置固定的加密密钥:
shiro:
rememberMe:
cipherKey: 你的固定密钥(建议32位以上)
3. 禁用rememberMe功能
如果不需要记住我功能,可以直接在配置中禁用:
shiro:
rememberMe:
enabled: false
4. 自定义RememberMeManager
实现自定义的RememberMeManager,覆盖默认的解密逻辑:
public class CustomRememberMeManager extends CookieRememberMeManager {
@Override
protected byte[] decrypt(byte[] encrypted) {
try {
return super.decrypt(encrypted);
} catch (CryptoException e) {
// 处理解密失败的情况
return null;
}
}
}
然后在Shiro配置中使用这个自定义实现。
最佳实践建议
-
生产环境:务必配置固定的加密密钥,避免服务器重启后无法解密之前的cookie。
-
开发环境:可以考虑定期清除cookie或使用无痕模式开发,减少此类问题发生。
-
错误处理:在自定义RememberMeManager中增加更健壮的错误处理逻辑。
-
密钥管理:加密密钥应该足够复杂,建议使用32位以上的随机字符串。
总结
JeecgBoot项目中出现的这个Shiro加密异常主要是由于rememberMe cookie解密失败导致的。通过清除浏览器cookie、配置固定密钥或禁用该功能都可以解决问题。在开发和生产环境中,采取适当的配置和错误处理策略可以避免此类问题的发生。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00