在Sentence Transformers中实现自定义信息检索评估指标
2025-05-13 07:33:46作者:廉彬冶Miranda
背景介绍
Sentence Transformers是一个强大的自然语言处理框架,专门用于生成高质量的句子嵌入。在实际应用中,我们经常需要评估这些嵌入模型在信息检索任务中的表现。框架内置的InformationRetrievalEvaluator类提供了多种标准评估指标,如准确率@k、召回率@k和MRR@k等。
自定义评估需求
在实际业务场景中,开发者常常需要获取更详细的评估数据,例如:
- 每个查询对应的第一个相关文档在结果中的绝对排名
- 按不同组别分别计算评估指标
- 获取更细粒度的排名分布信息
实现方案
扩展评估器类
我们可以通过继承InformationRetrievalEvaluator类并重写其compute_metrics方法来实现自定义评估指标。以下是关键实现步骤:
class CustomInformationRetrievalEvaluator(InformationRetrievalEvaluator):
def compute_metrics(self, queries_result_list: List[object]):
# 初始化自定义指标
min_rank_at_k = {k: [] for k in self.precision_recall_at_k}
# 计算标准指标
# ... (原有指标计算代码)
# 计算第一个相关文档的排名
for query_itr in range(len(queries_result_list)):
top_hits = sorted(queries_result_list[query_itr],
key=lambda x: x["score"], reverse=True)
query_relevant_docs = self.relevant_docs[query_id]
for k_val in self.precision_recall_at_k:
rank = k_val # 默认值,表示未找到相关文档
for idx, hit in enumerate(top_hits[:k_val]):
if hit["corpus_id"] in query_relevant_docs:
rank = idx
break
min_rank_at_k[k_val].append(rank)
# 计算平均排名
for k in min_rank_at_k:
min_rank_at_k[k] = np.mean(min_rank_at_k[k])
# 返回包含自定义指标的结果
return {
**super().compute_metrics(queries_result_list),
"min_rank@k": min_rank_at_k
}
按组别评估的实现
对于需要按组别评估的需求,可以采用以下策略:
- 预先将数据集按组别划分
- 为每个组别创建独立的评估器实例
- 分别运行评估并收集结果
- 合并各组结果进行综合分析
# 假设数据集已按group_id分组
group_results = {}
for group_id, group_data in dataset.groupby('group_id'):
evaluator = CustomInformationRetrievalEvaluator(
corpus=group_data.corpus,
queries=group_data.queries,
relevant_docs=group_data.relevant_docs
)
group_results[group_id] = evaluator(model)
技术细节解析
排名计算的边界情况处理
在计算第一个相关文档的排名时,需要考虑以下边界情况:
- 相关文档出现在结果列表的前k个位置:记录其实际排名(0到k-1)
- 相关文档未出现在前k个位置:可以设置为k或特殊值(如-1)
- 多个相关文档的情况:通常只需记录排名最高的那个
性能优化建议
- 避免重复计算:在compute_metrics方法中一次性计算所有需要的指标
- 使用向量化操作:对于大型数据集,尽量使用numpy的向量化计算
- 并行处理:对于分组评估,可以使用多进程并行处理不同组别
实际应用示例
假设我们有一个问答数据集,包含10万条问题和答案对。我们可以:
- 按问题类别分组
- 为每个类别计算MRR@10和平均排名
- 分析模型在不同类别上的表现差异
# 加载数据集
dataset = load_dataset("qa_dataset")
dataset = dataset.add_column("id", range(len(dataset)))
# 按类别分组评估
category_results = {}
for category in dataset.unique('category'):
cat_data = dataset.filter(lambda x: x['category'] == category)
evaluator = CustomInformationRetrievalEvaluator(
corpus=dict(zip(cat_data['id'], cat_data['answer'])),
queries=dict(zip(cat_data['id'], cat_data['question'])),
relevant_docs={qid: {qid} for qid in cat_data['id']}
)
category_results[category] = evaluator(model)
总结
通过扩展Sentence Transformers的评估器类,我们可以灵活地获取各种自定义评估指标,满足不同业务场景的需求。这种方法不仅适用于信息检索任务,也可以推广到其他需要细粒度评估的嵌入模型应用中。关键点在于理解评估器的内部工作机制,并根据实际需求进行适当的扩展。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878