在Sentence Transformers中实现自定义信息检索评估指标
2025-05-13 00:40:50作者:廉彬冶Miranda
背景介绍
Sentence Transformers是一个强大的自然语言处理框架,专门用于生成高质量的句子嵌入。在实际应用中,我们经常需要评估这些嵌入模型在信息检索任务中的表现。框架内置的InformationRetrievalEvaluator类提供了多种标准评估指标,如准确率@k、召回率@k和MRR@k等。
自定义评估需求
在实际业务场景中,开发者常常需要获取更详细的评估数据,例如:
- 每个查询对应的第一个相关文档在结果中的绝对排名
- 按不同组别分别计算评估指标
- 获取更细粒度的排名分布信息
实现方案
扩展评估器类
我们可以通过继承InformationRetrievalEvaluator类并重写其compute_metrics方法来实现自定义评估指标。以下是关键实现步骤:
class CustomInformationRetrievalEvaluator(InformationRetrievalEvaluator):
def compute_metrics(self, queries_result_list: List[object]):
# 初始化自定义指标
min_rank_at_k = {k: [] for k in self.precision_recall_at_k}
# 计算标准指标
# ... (原有指标计算代码)
# 计算第一个相关文档的排名
for query_itr in range(len(queries_result_list)):
top_hits = sorted(queries_result_list[query_itr],
key=lambda x: x["score"], reverse=True)
query_relevant_docs = self.relevant_docs[query_id]
for k_val in self.precision_recall_at_k:
rank = k_val # 默认值,表示未找到相关文档
for idx, hit in enumerate(top_hits[:k_val]):
if hit["corpus_id"] in query_relevant_docs:
rank = idx
break
min_rank_at_k[k_val].append(rank)
# 计算平均排名
for k in min_rank_at_k:
min_rank_at_k[k] = np.mean(min_rank_at_k[k])
# 返回包含自定义指标的结果
return {
**super().compute_metrics(queries_result_list),
"min_rank@k": min_rank_at_k
}
按组别评估的实现
对于需要按组别评估的需求,可以采用以下策略:
- 预先将数据集按组别划分
- 为每个组别创建独立的评估器实例
- 分别运行评估并收集结果
- 合并各组结果进行综合分析
# 假设数据集已按group_id分组
group_results = {}
for group_id, group_data in dataset.groupby('group_id'):
evaluator = CustomInformationRetrievalEvaluator(
corpus=group_data.corpus,
queries=group_data.queries,
relevant_docs=group_data.relevant_docs
)
group_results[group_id] = evaluator(model)
技术细节解析
排名计算的边界情况处理
在计算第一个相关文档的排名时,需要考虑以下边界情况:
- 相关文档出现在结果列表的前k个位置:记录其实际排名(0到k-1)
- 相关文档未出现在前k个位置:可以设置为k或特殊值(如-1)
- 多个相关文档的情况:通常只需记录排名最高的那个
性能优化建议
- 避免重复计算:在compute_metrics方法中一次性计算所有需要的指标
- 使用向量化操作:对于大型数据集,尽量使用numpy的向量化计算
- 并行处理:对于分组评估,可以使用多进程并行处理不同组别
实际应用示例
假设我们有一个问答数据集,包含10万条问题和答案对。我们可以:
- 按问题类别分组
- 为每个类别计算MRR@10和平均排名
- 分析模型在不同类别上的表现差异
# 加载数据集
dataset = load_dataset("qa_dataset")
dataset = dataset.add_column("id", range(len(dataset)))
# 按类别分组评估
category_results = {}
for category in dataset.unique('category'):
cat_data = dataset.filter(lambda x: x['category'] == category)
evaluator = CustomInformationRetrievalEvaluator(
corpus=dict(zip(cat_data['id'], cat_data['answer'])),
queries=dict(zip(cat_data['id'], cat_data['question'])),
relevant_docs={qid: {qid} for qid in cat_data['id']}
)
category_results[category] = evaluator(model)
总结
通过扩展Sentence Transformers的评估器类,我们可以灵活地获取各种自定义评估指标,满足不同业务场景的需求。这种方法不仅适用于信息检索任务,也可以推广到其他需要细粒度评估的嵌入模型应用中。关键点在于理解评估器的内部工作机制,并根据实际需求进行适当的扩展。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896