解决Sentence-Transformers中EmbeddingSimilarityEvaluator的KeyError问题
在使用Sentence-Transformers进行文本相似度任务时,EmbeddingSimilarityEvaluator是一个常用的评估工具,它能够计算模型在相似度任务上的表现。然而,近期有用户在Google Colab环境中遇到了一个令人困惑的问题——在评估阶段出现了KeyError,提示找不到"cosine_pearson"或"pearson_cosine"等键值。
这个问题最初出现在用户尝试使用ko-RoBERTa模型和KorSTS数据集进行微调实验时。尽管训练过程顺利完成,但在评估阶段却意外中断。深入分析后发现,这是由于评估器中指标键名的生成与检索方式不一致导致的。
问题的核心在于评估器内部对相似度指标命名的处理逻辑。在计算皮尔逊相关系数和斯皮尔曼相关系数时,评估器会将这些指标与相似度函数名称(如cosine)组合生成复合键名。然而,在某些版本中,这个组合顺序出现了不一致——有时生成的是"cosine_pearson",而检索时却尝试访问"pearson_cosine"。
这个问题在最新版本的代码库中已经得到修复。修复方案确保了键名的生成和检索遵循统一的命名规则,消除了这种不一致性。对于遇到此问题的用户,最简单的解决方案是更新到最新版本的Sentence-Transformers。
值得注意的是,这个问题在Google Colab的预装环境中尤为突出,因为Colab可能不会立即更新到包含修复的最新版本。用户可以通过手动克隆代码库并重新安装来解决这个问题。具体步骤包括:首先卸载现有版本,然后从代码库克隆最新代码,最后进行本地安装。
这个案例提醒我们,在使用开源工具时,版本兼容性问题可能会以意想不到的方式出现。当遇到类似问题时,检查最新代码库中的修复记录往往能快速找到解决方案。同时,也建议开发者在进行重要实验前,确认所使用的工具版本是否经过充分测试。
对于Sentence-Transformers的用户来说,好消息是这个特定的KeyError问题将在下一个正式版本中得到彻底解决。在此期间,用户可以选择等待官方更新,或者按照上述方法手动应用修复。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00