解决Sentence-Transformers中EmbeddingSimilarityEvaluator的KeyError问题
在使用Sentence-Transformers进行文本相似度任务时,EmbeddingSimilarityEvaluator是一个常用的评估工具,它能够计算模型在相似度任务上的表现。然而,近期有用户在Google Colab环境中遇到了一个令人困惑的问题——在评估阶段出现了KeyError,提示找不到"cosine_pearson"或"pearson_cosine"等键值。
这个问题最初出现在用户尝试使用ko-RoBERTa模型和KorSTS数据集进行微调实验时。尽管训练过程顺利完成,但在评估阶段却意外中断。深入分析后发现,这是由于评估器中指标键名的生成与检索方式不一致导致的。
问题的核心在于评估器内部对相似度指标命名的处理逻辑。在计算皮尔逊相关系数和斯皮尔曼相关系数时,评估器会将这些指标与相似度函数名称(如cosine)组合生成复合键名。然而,在某些版本中,这个组合顺序出现了不一致——有时生成的是"cosine_pearson",而检索时却尝试访问"pearson_cosine"。
这个问题在最新版本的代码库中已经得到修复。修复方案确保了键名的生成和检索遵循统一的命名规则,消除了这种不一致性。对于遇到此问题的用户,最简单的解决方案是更新到最新版本的Sentence-Transformers。
值得注意的是,这个问题在Google Colab的预装环境中尤为突出,因为Colab可能不会立即更新到包含修复的最新版本。用户可以通过手动克隆代码库并重新安装来解决这个问题。具体步骤包括:首先卸载现有版本,然后从代码库克隆最新代码,最后进行本地安装。
这个案例提醒我们,在使用开源工具时,版本兼容性问题可能会以意想不到的方式出现。当遇到类似问题时,检查最新代码库中的修复记录往往能快速找到解决方案。同时,也建议开发者在进行重要实验前,确认所使用的工具版本是否经过充分测试。
对于Sentence-Transformers的用户来说,好消息是这个特定的KeyError问题将在下一个正式版本中得到彻底解决。在此期间,用户可以选择等待官方更新,或者按照上述方法手动应用修复。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









