解决Sentence-Transformers中EmbeddingSimilarityEvaluator的KeyError问题
在使用Sentence-Transformers进行文本相似度任务时,EmbeddingSimilarityEvaluator是一个常用的评估工具,它能够计算模型在相似度任务上的表现。然而,近期有用户在Google Colab环境中遇到了一个令人困惑的问题——在评估阶段出现了KeyError,提示找不到"cosine_pearson"或"pearson_cosine"等键值。
这个问题最初出现在用户尝试使用ko-RoBERTa模型和KorSTS数据集进行微调实验时。尽管训练过程顺利完成,但在评估阶段却意外中断。深入分析后发现,这是由于评估器中指标键名的生成与检索方式不一致导致的。
问题的核心在于评估器内部对相似度指标命名的处理逻辑。在计算皮尔逊相关系数和斯皮尔曼相关系数时,评估器会将这些指标与相似度函数名称(如cosine)组合生成复合键名。然而,在某些版本中,这个组合顺序出现了不一致——有时生成的是"cosine_pearson",而检索时却尝试访问"pearson_cosine"。
这个问题在最新版本的代码库中已经得到修复。修复方案确保了键名的生成和检索遵循统一的命名规则,消除了这种不一致性。对于遇到此问题的用户,最简单的解决方案是更新到最新版本的Sentence-Transformers。
值得注意的是,这个问题在Google Colab的预装环境中尤为突出,因为Colab可能不会立即更新到包含修复的最新版本。用户可以通过手动克隆代码库并重新安装来解决这个问题。具体步骤包括:首先卸载现有版本,然后从代码库克隆最新代码,最后进行本地安装。
这个案例提醒我们,在使用开源工具时,版本兼容性问题可能会以意想不到的方式出现。当遇到类似问题时,检查最新代码库中的修复记录往往能快速找到解决方案。同时,也建议开发者在进行重要实验前,确认所使用的工具版本是否经过充分测试。
对于Sentence-Transformers的用户来说,好消息是这个特定的KeyError问题将在下一个正式版本中得到彻底解决。在此期间,用户可以选择等待官方更新,或者按照上述方法手动应用修复。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00