跨模态少样本适应项目教程
2024-08-17 23:24:14作者:乔或婵
项目介绍
cross_modal_adaptation 是一个用于跨模态少样本学习的开源项目,基于 CLIP 模型实现。该项目旨在通过多模态模型在少样本学习场景下进行视觉-语言适应,并在多个目标图像分类数据集上进行实验。此外,项目还涉及在 ImageNet-ESC 基准上的视听少样本学习。
项目快速启动
环境配置
首先,建议通过 conda 和 pip 安装环境。创建一个新的环境并安装所需的 Python 版本和 PyTorch:
conda create -n cross_modal python=3.9
conda activate cross_modal
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
数据集安装
按照 DATASETS.md 文件中的说明安装下游数据集。
训练
要复现实验,请运行以下命令:
python imagenet_esc.py
应用案例和最佳实践
案例一:图像分类
在 cross_modal_adaptation 项目中,图像分类是一个核心应用。通过少样本学习,模型可以在有限的标注数据上进行训练,从而在新的数据集上实现高性能的分类。
案例二:视听学习
项目还支持视听少样本学习,通过结合图像和音频数据,模型可以在视听数据上进行训练,从而在视听分类任务中表现出色。
典型生态项目
CLIP 模型
cross_modal_adaptation 项目基于 CLIP 模型,CLIP 是一个强大的视觉-语言模型,能够通过大规模的图像-文本对进行预训练,从而在多种视觉任务中表现出色。
PyTorch
项目使用 PyTorch 作为主要的深度学习框架,PyTorch 提供了灵活且高效的神经网络构建和训练工具,是当前最受欢迎的深度学习框架之一。
通过以上教程,您可以快速了解并启动 cross_modal_adaptation 项目,并在实际应用中进行跨模态少样本学习。
登录后查看全文
热门项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
415
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
612
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141