Seurat空间转录组数据分析:从GEO数据构建Visium对象
2025-07-02 02:10:42作者:苗圣禹Peter
概述
空间转录组技术如10x Genomics Visium正在改变我们对组织微环境的理解。许多研究团队将Visium数据上传至GEO数据库,通常包含四个关键文件:表达矩阵、坐标信息、图像文件和缩放因子。本文将详细介绍如何利用这些文件构建Seurat空间转录组分析对象。
数据准备
典型的Visium数据集包含以下四个文件:
filtered_feature_bc_matrix.h5- 表达矩阵文件(HDF5格式)tissue_positions_list.csv- 空间坐标信息scalefactors_json.json- 图像缩放因子image_lowres_image.png- 组织切片图像
构建Seurat对象的正确方法
Seurat提供了专门的函数Load10X_Spatial来简化Visium数据的加载过程。这个函数会自动识别并整合所有必需的文件,前提是将它们放在同一个目录下。
# 设置数据目录路径
data_dir <- "path/to/your/visium/data/folder"
# 加载空间转录组数据
visium_obj <- Load10X_Spatial(data.dir = data_dir)
手动构建的替代方案
如果自动加载遇到问题,也可以选择手动构建对象:
- 读取表达矩阵:
 
counts <- Read10X_h5("filtered_feature_bc_matrix.h5")
- 处理空间坐标:
 
positions <- read.csv("tissue_positions_list.csv", header = FALSE)
colnames(positions) <- c("barcode", "in_tissue", "array_row", "array_col", 
                        "pxl_row_in_fullres", "pxl_col_in_fullres")
rownames(positions) <- positions$barcode
- 创建Seurat对象并添加空间信息:
 
visium_obj <- CreateSeuratObject(counts = counts, assay = "Spatial")
visium_obj[["spatial"]] <- CreateDimReducObject(
  embeddings = as.matrix(positions[, c("pxl_row_in_fullres", "pxl_col_in_fullres")]),
  key = "spatial_",
  assay = "Spatial"
)
常见问题解决
- 
坐标文件格式问题: 如果坐标文件列名异常(如X0, X0.1等),需要手动指定列名或重新命名。
 - 
图像加载问题: 确保图像文件与缩放因子文件在同一目录,且文件名符合标准命名规范。
 - 
表达矩阵与坐标不匹配: 检查barcode是否一致,必要时进行过滤和匹配。
 
最佳实践建议
- 优先使用
Load10X_Spatial函数,它已针对Visium数据优化 - 保持原始文件结构不变,不要重命名或移动文件
 - 在处理多个样本时,为每个样本创建单独的子目录
 - 加载后检查对象完整性:
 
# 检查空间坐标
SpatialFeaturePlot(visium_obj, features = "nCount_Spatial")
通过以上方法,研究人员可以高效地将GEO中的Visium数据转换为Seurat对象,为后续的空间转录组分析奠定基础。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445