Seurat空间转录组数据分析:从GEO数据构建Visium对象
2025-07-02 13:27:09作者:苗圣禹Peter
概述
空间转录组技术如10x Genomics Visium正在改变我们对组织微环境的理解。许多研究团队将Visium数据上传至GEO数据库,通常包含四个关键文件:表达矩阵、坐标信息、图像文件和缩放因子。本文将详细介绍如何利用这些文件构建Seurat空间转录组分析对象。
数据准备
典型的Visium数据集包含以下四个文件:
filtered_feature_bc_matrix.h5- 表达矩阵文件(HDF5格式)tissue_positions_list.csv- 空间坐标信息scalefactors_json.json- 图像缩放因子image_lowres_image.png- 组织切片图像
构建Seurat对象的正确方法
Seurat提供了专门的函数Load10X_Spatial来简化Visium数据的加载过程。这个函数会自动识别并整合所有必需的文件,前提是将它们放在同一个目录下。
# 设置数据目录路径
data_dir <- "path/to/your/visium/data/folder"
# 加载空间转录组数据
visium_obj <- Load10X_Spatial(data.dir = data_dir)
手动构建的替代方案
如果自动加载遇到问题,也可以选择手动构建对象:
- 读取表达矩阵:
counts <- Read10X_h5("filtered_feature_bc_matrix.h5")
- 处理空间坐标:
positions <- read.csv("tissue_positions_list.csv", header = FALSE)
colnames(positions) <- c("barcode", "in_tissue", "array_row", "array_col",
"pxl_row_in_fullres", "pxl_col_in_fullres")
rownames(positions) <- positions$barcode
- 创建Seurat对象并添加空间信息:
visium_obj <- CreateSeuratObject(counts = counts, assay = "Spatial")
visium_obj[["spatial"]] <- CreateDimReducObject(
embeddings = as.matrix(positions[, c("pxl_row_in_fullres", "pxl_col_in_fullres")]),
key = "spatial_",
assay = "Spatial"
)
常见问题解决
-
坐标文件格式问题: 如果坐标文件列名异常(如X0, X0.1等),需要手动指定列名或重新命名。
-
图像加载问题: 确保图像文件与缩放因子文件在同一目录,且文件名符合标准命名规范。
-
表达矩阵与坐标不匹配: 检查barcode是否一致,必要时进行过滤和匹配。
最佳实践建议
- 优先使用
Load10X_Spatial函数,它已针对Visium数据优化 - 保持原始文件结构不变,不要重命名或移动文件
- 在处理多个样本时,为每个样本创建单独的子目录
- 加载后检查对象完整性:
# 检查空间坐标
SpatialFeaturePlot(visium_obj, features = "nCount_Spatial")
通过以上方法,研究人员可以高效地将GEO中的Visium数据转换为Seurat对象,为后续的空间转录组分析奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218