Ragas项目v0.2.14版本发布:增强评估能力与集成支持
Ragas是一个专注于评估检索增强生成(RAG)系统性能的开源框架。RAG系统结合了信息检索和文本生成的能力,在问答、对话等场景中表现优异。Ragas通过提供一系列评估指标,帮助开发者量化RAG系统的质量,包括答案相关性、事实一致性、上下文相关性等维度。
本次发布的v0.2.14版本带来了多项重要改进和新功能,主要集中在评估能力增强、多轮对话支持、以及与其他框架的集成方面。这些更新使Ragas能够更好地服务于RAG系统的开发和优化工作。
核心功能增强
多轮对话评估支持
新版本显著增强了对多轮对话场景的评估能力。在真实的对话系统中,用户往往会通过多次交互来获取完整信息,这种多轮交互的特性给评估带来了额外挑战。v0.2.14版本专门优化了这方面的支持,使得开发者能够更准确地评估系统在多轮对话中的表现。
NVIDIA端到端评估指标
本次更新引入了来自NVIDIA的三种重要评估指标:
- 端到端准确性(End-to-End Accuracy):衡量系统从问题到最终答案的整体准确性
- 相关性(Relevance):评估生成答案与问题的相关程度
- 事实基础性(Groundedness):检查答案是否基于提供的上下文信息
这些指标特别针对生产环境中的实际需求进行了优化,其中事实基础性指标还实现了5次重试的早期中断机制,提高了评估效率。
框架集成扩展
R2R框架集成
Ragas现在提供了与R2R框架的深度集成支持。R2R是一个快速发展的RAG框架,这次集成使得使用R2R构建的系统能够直接利用Ragas的评估能力,为开发者提供了更完整的工作流。
Haystack支持
新版本增加了对Haystack的LLM和嵌入模型包装器的支持。Haystack是一个流行的开源NLP框架,这次集成意味着开发者可以更方便地在Haystack生态中使用Ragas的评估功能,无需额外的适配工作。
评估质量改进
评估协议强化
v0.2.14版本对评估协议进行了强化,特别是增加了对ModeMetric协议的运行时检查。这一改进确保了评估过程的健壮性,能够在早期发现潜在的参数或配置问题,避免因配置错误导致的评估结果偏差。
语义相似度描述修正
修正了语义相似度指标中关于模型架构的描述,将原先的"cross-encoder"更正为"bi-encoder"。这一修正虽然看似微小,但对于正确理解和使用该指标具有重要意义,避免了开发者对技术实现的误解。
性能与稳定性优化
知识图谱存储优化
在知识图谱处理方面,新版本优化了存储方式,现在在保存关系时只存储节点ID而非完整节点信息。这一改变显著减少了存储空间需求,提高了处理大规模知识图谱时的效率。
噪声敏感性改进
对噪声敏感性指标进行了不必要的名称更新,使其更符合实际功能。虽然这只是命名上的调整,但有助于开发者更直观地理解该指标的作用。
数组类型处理
修复了NumPy数组数据类型相关的问题,并改进了错误信息的描述。这使得在处理数值数据时更加可靠,同时在出现问题时能够提供更清晰的调试信息。
使用体验提升
日志控制
新增了通过环境标志控制HTTP请求-响应日志的功能。开发者现在可以根据需要灵活地开启或关闭详细的HTTP通信日志,既方便调试又不会在生产环境中产生过多日志。
JSON输出修正
修复了JSON输出模式的问题,确保总是返回有效的JSON结构。这一改进使得自动化处理评估结果更加可靠,减少了后续处理中的解析错误。
余弦相似度处理
扩展了余弦相似度转换对101-500个token的文档的支持,填补了之前版本中的处理空白,使得对中等长度文档的评估更加准确。
总结
Ragas v0.2.14版本通过多项功能增强和问题修复,进一步巩固了其作为RAG系统评估首选工具的地位。特别是新增的多轮对话评估支持和NVIDIA提供的专业指标,使得它能够更好地满足复杂场景下的评估需求。同时,与R2R和Haystack等框架的深度集成,大大扩展了其应用场景和易用性。
这些改进不仅提升了评估的准确性和可靠性,也为开发者提供了更灵活、更高效的评估工作流。随着Ragas功能的不断完善,它正在成为构建高质量RAG系统不可或缺的工具之一。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00