使用Ragas生成合成测试集并评估RAG系统性能指南
2025-05-26 01:07:32作者:翟江哲Frasier
Ragas是一个用于评估检索增强生成(RAG)系统性能的开源框架。本文将详细介绍如何利用Ragas生成合成测试数据集,并将其用于RAG系统的评估流程。
Ragas测试集生成原理
Ragas的测试集生成器基于大语言模型(LLM)的能力,能够自动创建多样化的测试问题。生成器支持三种问题演化类型:
- 简单问题:直接基于文档内容生成的问题
- 推理问题:需要多步推理才能回答的问题
- 多上下文问题:需要结合多个文档片段才能回答的问题
通过调整这三种类型的分布比例,可以创建符合特定需求的测试集。
完整工作流程
1. 环境准备
首先需要安装必要的Python包并配置API密钥:
!pip install ragas langchain openai
import os
os.environ["OPENAI_API_KEY"] = "your-openai-key"
2. 文档加载与预处理
使用LangChain的文档加载器加载待评估的文档:
from langchain_community.document_loaders import DirectoryLoader
loader = DirectoryLoader("your-docs-directory")
documents = loader.load()
# 确保文档包含必要的元数据
for doc in documents:
doc.metadata['filename'] = doc.metadata.get('source', 'unknown')
3. 测试集生成
配置生成器并创建测试集:
from ragas.testset.generator import TestsetGenerator
from ragas.testset.evolutions import simple, reasoning, multi_context
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
# 初始化LLM和嵌入模型
generator_llm = ChatOpenAI(model="gpt-3.5-turbo-16k")
critic_llm = ChatOpenAI(model="gpt-4")
embeddings = OpenAIEmbeddings()
# 创建生成器实例
generator = TestsetGenerator.from_langchain(
generator_llm,
critic_llm,
embeddings
)
# 设置问题类型分布
distributions = {
simple: 0.5, # 50%简单问题
reasoning: 0.25, # 25%推理问题
multi_context: 0.25 # 25%多上下文问题
}
# 生成测试集
testset = generator.generate_with_langchain_docs(
documents,
test_size=10,
distributions=distributions
)
4. 数据格式转换与验证
将生成的测试集转换为评估所需的格式:
from datasets import Dataset
import pandas as pd
# 转换为Pandas DataFrame
test_df = testset.to_pandas()
# 确保包含必要的列
required_columns = ['question', 'answer', 'contexts', 'ground_truth']
for col in required_columns:
if col not in test_df.columns:
test_df[col] = None # 或根据实际情况填充默认值
# 确保数据类型正确
test_df['answer'] = test_df['answer'].astype(str)
test_df['contexts'] = test_df['contexts'].apply(lambda x: [str(i) for i in x])
# 转换回Dataset格式
eval_dataset = Dataset.from_pandas(test_df)
5. 评估RAG系统
使用Ragas提供的指标进行评估:
from ragas import evaluate
from ragas.metrics import (
answer_relevancy,
faithfulness,
context_recall,
context_precision,
)
# 执行评估
result = evaluate(
eval_dataset,
metrics=[
context_precision,
faithfulness,
answer_relevancy,
context_recall,
],
)
# 查看结果
print(result)
关键指标解析
Ragas提供了多个评估指标,每个指标衡量RAG系统的不同方面:
- 答案相关性(Answer Relevancy):评估答案与问题的相关程度
- 忠实度(Faithfulness):衡量答案是否忠实于提供的上下文
- 上下文召回率(Context Recall):评估系统检索到的上下文是否包含回答问题所需的所有信息
- 上下文精确度(Context Precision):衡量检索到的上下文中有多少是真正相关的
实际应用建议
- 测试集大小:根据文档复杂度和评估需求,合理设置test_size参数
- 问题分布:调整三种问题类型的比例以模拟真实使用场景
- 评估频率:建议在RAG系统迭代开发过程中定期进行评估
- 结果分析:不仅要关注总体得分,还要分析各指标间的平衡关系
常见问题解决方案
- 缺少必要列:确保数据集包含question、answer、contexts和ground_truth列
- 数据类型错误:使用astype(str)确保文本列格式正确
- 评估失败:检查API密钥和网络连接,确保评估环境配置正确
通过本文介绍的方法,开发者可以系统性地评估RAG系统的性能,为优化提供数据支持。Ragas的自动化测试生成和评估能力大大降低了RAG系统评估的门槛,使团队能够更专注于模型和检索组件的优化工作。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443