mcp-atlassian v0.11.0 发布:多用户认证与Confluence增强功能解析
mcp-atlassian 是一个专注于 Atlassian 生态系统的中间件工具,它通过提供标准化的 API 接口,简化了与 Jira 和 Confluence 等 Atlassian 产品的集成工作。该工具特别适合用于构建自动化工作流、AI 助手集成以及企业级应用连接场景。
多用户认证体系革新
本次 v0.11.0 版本最核心的改进是引入了完善的多用户认证机制。这一特性使得 mcp-atlassian 可以作为一个共享服务运行,同时支持不同用户使用各自的凭证进行操作,这在企业级应用中尤为重要。
系统现在支持两种主流认证方式:
- OAuth 2.0 Bearer Token:适用于 Atlassian Cloud 环境
- Personal Access Token (PAT):适用于 Server/Data Center 部署
技术实现上,服务端会动态创建用户专属的 Jira 和 Confluence 客户端实例。这种设计既保证了隔离性,又不会造成资源浪费。当请求携带 Authorization 头(格式为 Bearer <OAuth_Token> 或 Token <PAT>)时,系统会自动识别并建立对应的客户端连接。
这一改进特别适合以下场景:
- 构建共享的 AI 助手服务,让助手以用户身份执行操作
- 开发多租户应用,每个用户保持自己的权限边界
- 实现更精细的审计跟踪,操作可以追溯到具体用户
Confluence 功能增强
新增评论功能
新引入的 confluence_add_comment 工具填补了内容交互的重要空白。开发者现在可以通过 API 以编程方式在指定页面下添加评论,这为以下场景提供了可能:
- 自动化工作流完成后添加执行备注
- AI 助手参与页面讨论
- 构建基于事件触发的通知系统
灵活的页面查询
confluence_get_page 工具得到了显著增强,新增了通过 title 和 space_key 组合查询页面的能力。这一改进解决了实际开发中的常见痛点 - 当我们构建自动化流程时,往往更容易获取页面的标题和空间信息,而非页面ID。
新的查询方式采用"与"逻辑,必须同时提供标题和空间键才能准确定位页面。这种设计既保证了查询精度,又避免了因仅使用标题可能导致的歧义。
内容处理优化
针对 Confluence 内容中的用户信息宏(User Profile Macro),v0.11.0 修复了处理逻辑。此前版本中,这类宏可能被错误解析为"falsefalsefullName"等无意义字符串,或者直接以原始宏标签形式输出。
新版本实现了:
- 准确识别用户信息宏
- 动态获取用户显示名称
- 无缝替换宏标记为可读文本
这一改进显著提升了从 Confluence 获取内容的可读性和可用性,特别有利于需要处理用户提及(@mention)功能的场景。
技术架构调整
为支持新特性,项目内部进行了多项架构优化:
- 重构了服务上下文管理,支持动态客户端创建
- 改进了依赖注入机制,适应多用户环境
- 引入了 cachetools 库,为后续的令牌验证缓存做准备
这些底层改进不仅支撑了当前功能,也为未来的扩展打下了良好基础。
应用场景展望
结合新特性,mcp-atlassian 现在能够更好地服务于以下场景:
- 企业知识管理:AI 助手可以以用户身份参与知识库建设,在适当位置添加注释或补充内容
- 自动化报告系统:定期生成的报告可以自动附带执行备注,形成完整审计链
- 跨团队协作:不同部门的自动化工具可以安全地共享同一个 mcp-atlassian 实例,各自保持权限隔离
随着 Atlassian 生态在企业中的广泛使用,mcp-atlassian 这类中间件工具的价值将愈发凸显。v0.11.0 版本通过多用户支持和功能增强,使工具更加贴合实际企业需求。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00