Apache Doris 异步物化视图创建指南
2025-06-27 00:19:56作者:滑思眉Philip
概述
Apache Doris 的异步物化视图是一种预先计算并存储查询结果的数据库对象,能够显著提升复杂查询的性能。本文将详细介绍如何使用 CREATE ASYNC MATERIALIZED VIEW 语句创建异步物化视图,包括语法结构、参数说明、使用限制以及最佳实践。
基本语法
CREATE MATERIALIZED VIEW
[ IF NOT EXISTS ] <materialized_view_name>
[ (<columns_definition>) ]
[ BUILD <build_mode> ]
[ REFRESH <refresh_method> [<refresh_trigger>]]
[ [DUPLICATE] KEY (<key_cols>) ]
[ COMMENT '<table_comment>' ]
[ PARTITION BY (
{ <partition_col>
| DATE_TRUNC(<partition_col>, <partition_unit>) }
)]
[ DISTRIBUTED BY { HASH (<distribute_cols>) | RANDOM }
[ BUCKETS { <bucket_count> | AUTO } ]
]
[ PROPERTIES (
-- Table property
<table_property>
-- Additional table properties
[ , ... ])
]
AS <query>
核心参数详解
1. 必需参数
物化视图名称 (<materialized_view_name>)
- 必须在当前数据库内唯一
- 命名规则遵循标准标识符规范
- 不能使用保留关键字
查询语句 (<query>)
- 定义物化视图的数据来源和计算逻辑
- 支持标准 SELECT 语句
- 可以包含 JOIN、GROUP BY、聚合函数等复杂操作
2. 可选参数
键列定义 (<key_cols>)
- 指定物化视图的键列
- 键列必须是表的前 K 列
- 影响数据存储和查询效率
构建模式 (<build_mode>)
- IMMEDIATE:创建后立即刷新(默认)
- DEFERRED:延迟刷新
刷新机制 (<refresh_method>)
- COMPLETE:全量刷新
- AUTO:尝试增量刷新,失败时回退到全量刷新
触发方式 (<refresh_trigger>)
- MANUAL:手动触发
- ON SCHEDULE:定时刷新(支持 MINUTE/HOUR/DAY/WEEK 单位)
- ON COMMIT:基表数据变更时自动触发
分区策略 (PARTITION BY)
- 支持基于列或 DATE_TRUNC 函数的分区
- 可自动同步基表分区(仅支持内部表和 Hive 表)
- 支持分区上卷(roll-up)功能
高级特性
1. 物化视图属性
| 属性名称 | 功能说明 |
|---|---|
| grace_period | 允许查询改写时物化视图数据延迟的最大秒数 |
| excluded_trigger_tables | 数据刷新时忽略的表名列表 |
| refresh_partition_num | 单次 INSERT 语句刷新的分区数量 |
| workload_group | 指定刷新任务使用的资源组 |
| partition_sync_limit | 配置与基表同步的分区范围 |
| enable_nondeterministic_function | 是否允许物化视图定义包含非确定性函数(如 now(), random() 等) |
| use_for_rewrite | 是否参与查询透明改写 |
2. 分区增量更新条件
- 至少一个基表是分区表
- 基表使用 List 或 Range 分区策略
- 物化视图只能有一个分区字段
- 分区字段必须出现在 SELECT 子句中
- 使用 GROUP BY 时,分区字段必须出现在 GROUP BY 子句中
- 使用窗口函数时,分区字段必须出现在 Partition By 子句中
- 数据变更必须发生在分区表上
- 不能使用 JOIN 操作中 NULL 生成侧的分区字段
权限要求
创建物化视图需要以下权限:
- 数据库的 CREATE_PRIV 权限
- 查询中涉及的所有表和视图的 SELECT_PRIV 权限
使用限制
-
DDL 限制:
- 不支持修改列类型、添加或删除列
- 不支持手动 INSERT INTO 或 INSERT OVERWRITE 操作
-
刷新限制:
- 增量刷新有特定条件限制
- 非确定性函数需要显式启用
-
分区限制:
- 分区物化视图有严格的创建条件
- 分区同步有时间范围限制
最佳实践
-
选择合适的刷新策略:
- 高频更新的数据建议使用 ON COMMIT 触发
- 大数据量场景建议使用定时刷新
-
合理设置分区:
- 根据查询模式选择分区粒度
- 利用 DATE_TRUNC 进行时间维度上卷
-
资源隔离:
- 为物化视图刷新任务配置专用 workload_group
- 避免刷新任务影响线上查询性能
-
查询改写优化:
- 对仅用于直接查询的物化视图设置 use_for_rewrite=false
- 合理设置 grace_period 平衡数据一致性和查询性能
总结
Apache Doris 的异步物化视图是提升查询性能的强大工具,通过预计算和存储查询结果,可以显著减少复杂查询的执行时间。理解各种参数和限制条件,结合实际业务场景合理配置,能够最大化物化视图的价值。建议在生产环境部署前,先在测试环境验证物化视图的刷新策略和性能表现。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
303
2.67 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
133
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
594
129
React Native鸿蒙化仓库
JavaScript
231
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
613
仓颉编译器源码及 cjdb 调试工具。
C++
123
605
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.55 K