Apache Doris 工作负载管理:深入解析 Workload Group 机制
2025-06-27 19:34:42作者:彭桢灵Jeremy
概述
在现代大数据分析场景中,资源隔离是保证系统稳定性和多租户服务质量的关键技术。Apache Doris 作为一款高性能的 MPP 分析型数据库,通过 Workload Group 机制实现了进程内资源隔离,为不同业务负载提供差异化的资源保障。
核心概念
Workload Group 是什么
Workload Group 是 Apache Doris 实现的一种进程内资源隔离机制,它通过精细划分 BE 进程内的 CPU、内存和 IO 资源,为不同工作负载提供资源保障。其核心架构如下图所示:

主要特性
- CPU 资源管理:支持软限制(权重分配)和硬限制(绝对上限)
- 内存资源管理:支持软限制(可超用)和硬限制(严格上限)
- IO 资源管理:控制本地和远程文件读取产生的 IO
版本演进与兼容性
- Doris 2.0:首次引入 Workload Group 功能,此时不依赖 CGroup
- Doris 2.1:增强功能,开始依赖 CGroup 实现更精确的资源控制
升级注意事项:
- 1.2 升级到 2.0:建议全集群升级完成后再启用 Workload Group
- 2.0 升级到 2.1:必须先配置 CGroup 环境
环境配置详解
CGroup 环境搭建
Workload Group 的 CPU 管理依赖 CGroup,配置步骤如下:
-
检查 CGroup 版本:
cat /proc/filesystems | grep cgroup -
确认活跃版本:
- V1:检查
/sys/fs/cgroup/cpu/是否存在 - V2:检查
/sys/fs/cgroup/cgroup.controllers是否存在
- V1:检查
-
创建专用目录:
# V1 mkdir /sys/fs/cgroup/cpu/doris # V2 mkdir /sys/fs/cgroup/doris -
设置权限:
chmod 770 /path/to/doris chown -R doris:doris /path/to/doris -
V2 特殊配置:
chmod a+w /sys/fs/cgroup/cgroup.procs echo +cpu > ../cgroup.subtree_control -
修改 BE 配置:
# V1 doris_cgroup_cpu_path = /sys/fs/cgroup/cpu/doris # V2 doris_cgroup_cpu_path = /sys/fs/cgroup/doris -
验证配置:重启 BE 后检查日志中是否有 'add thread xxx to group' 信息
容器化部署注意事项
在容器环境中使用 Workload Group 需要:
- 容器以特权模式运行
- CPU 配额基于容器分配的 CPU 资源计算
- 内存和 IO 管理与物理机部署无差异
工作负载组管理
创建示例
CREATE WORKLOAD GROUP IF NOT EXISTS g1
PROPERTIES (
"cpu_share" = "1024",
"memory_limit" = "30%",
"enable_memory_overcommit" = "false"
);
系统会自动创建名为 normal 的默认组,不可删除。
关键属性详解
| 属性 | 类型 | 默认值 | 说明 |
|---|---|---|---|
| cpu_share | 整型 | -1 | CPU 软限制权重,值越大获得的 CPU 时间越多 |
| memory_limit | 浮点 | -1 | 内存限制百分比,0-100% |
| enable_memory_overcommit | 布尔 | true | 是否允许内存超用 |
| cpu_hard_limit | 整型 | -1 | CPU 硬限制百分比(2.1+) |
| max_concurrency | 整型 | MAX_INT | 最大并发查询数 |
| max_queue_size | 整型 | 0 | 查询队列最大长度 |
| queue_timeout | 整型 | 0 | 队列等待超时(ms) |
最佳实践
-
资源规划:
- 所有组的 memory_limit 总和建议保持在 100% 以下
- 为系统组件预留足够资源
-
隔离策略选择:
- 对延迟敏感业务:使用硬限制(cpu_hard_limit + enable_memory_overcommit=false)
- 普通业务:使用软限制(cpu_share + enable_memory_overcommit=true)
-
监控调整:
- 定期检查各组资源使用情况
- 根据业务变化动态调整配额
总结
Apache Doris 的 Workload Group 机制为多租户场景下的资源隔离提供了灵活高效的解决方案。通过合理配置,可以在资源利用率和业务隔离性之间取得平衡,满足不同业务场景的需求。理解其工作原理和配置要点,将帮助管理员更好地优化集群性能和服务质量。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K