Apache Doris 工作负载管理:深入解析 Workload Group 机制
2025-06-27 07:35:49作者:彭桢灵Jeremy
概述
在现代大数据分析场景中,资源隔离是保证系统稳定性和多租户服务质量的关键技术。Apache Doris 作为一款高性能的 MPP 分析型数据库,通过 Workload Group 机制实现了进程内资源隔离,为不同业务负载提供差异化的资源保障。
核心概念
Workload Group 是什么
Workload Group 是 Apache Doris 实现的一种进程内资源隔离机制,它通过精细划分 BE 进程内的 CPU、内存和 IO 资源,为不同工作负载提供资源保障。其核心架构如下图所示:
主要特性
- CPU 资源管理:支持软限制(权重分配)和硬限制(绝对上限)
- 内存资源管理:支持软限制(可超用)和硬限制(严格上限)
- IO 资源管理:控制本地和远程文件读取产生的 IO
版本演进与兼容性
- Doris 2.0:首次引入 Workload Group 功能,此时不依赖 CGroup
- Doris 2.1:增强功能,开始依赖 CGroup 实现更精确的资源控制
升级注意事项:
- 1.2 升级到 2.0:建议全集群升级完成后再启用 Workload Group
- 2.0 升级到 2.1:必须先配置 CGroup 环境
环境配置详解
CGroup 环境搭建
Workload Group 的 CPU 管理依赖 CGroup,配置步骤如下:
-
检查 CGroup 版本:
cat /proc/filesystems | grep cgroup
-
确认活跃版本:
- V1:检查
/sys/fs/cgroup/cpu/
是否存在 - V2:检查
/sys/fs/cgroup/cgroup.controllers
是否存在
- V1:检查
-
创建专用目录:
# V1 mkdir /sys/fs/cgroup/cpu/doris # V2 mkdir /sys/fs/cgroup/doris
-
设置权限:
chmod 770 /path/to/doris chown -R doris:doris /path/to/doris
-
V2 特殊配置:
chmod a+w /sys/fs/cgroup/cgroup.procs echo +cpu > ../cgroup.subtree_control
-
修改 BE 配置:
# V1 doris_cgroup_cpu_path = /sys/fs/cgroup/cpu/doris # V2 doris_cgroup_cpu_path = /sys/fs/cgroup/doris
-
验证配置:重启 BE 后检查日志中是否有 'add thread xxx to group' 信息
容器化部署注意事项
在容器环境中使用 Workload Group 需要:
- 容器以特权模式运行
- CPU 配额基于容器分配的 CPU 资源计算
- 内存和 IO 管理与物理机部署无差异
工作负载组管理
创建示例
CREATE WORKLOAD GROUP IF NOT EXISTS g1
PROPERTIES (
"cpu_share" = "1024",
"memory_limit" = "30%",
"enable_memory_overcommit" = "false"
);
系统会自动创建名为 normal
的默认组,不可删除。
关键属性详解
属性 | 类型 | 默认值 | 说明 |
---|---|---|---|
cpu_share | 整型 | -1 | CPU 软限制权重,值越大获得的 CPU 时间越多 |
memory_limit | 浮点 | -1 | 内存限制百分比,0-100% |
enable_memory_overcommit | 布尔 | true | 是否允许内存超用 |
cpu_hard_limit | 整型 | -1 | CPU 硬限制百分比(2.1+) |
max_concurrency | 整型 | MAX_INT | 最大并发查询数 |
max_queue_size | 整型 | 0 | 查询队列最大长度 |
queue_timeout | 整型 | 0 | 队列等待超时(ms) |
最佳实践
-
资源规划:
- 所有组的 memory_limit 总和建议保持在 100% 以下
- 为系统组件预留足够资源
-
隔离策略选择:
- 对延迟敏感业务:使用硬限制(cpu_hard_limit + enable_memory_overcommit=false)
- 普通业务:使用软限制(cpu_share + enable_memory_overcommit=true)
-
监控调整:
- 定期检查各组资源使用情况
- 根据业务变化动态调整配额
总结
Apache Doris 的 Workload Group 机制为多租户场景下的资源隔离提供了灵活高效的解决方案。通过合理配置,可以在资源利用率和业务隔离性之间取得平衡,满足不同业务场景的需求。理解其工作原理和配置要点,将帮助管理员更好地优化集群性能和服务质量。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0121AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
585

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
288