使用Lightly和Detectron2进行自监督预训练与微调的实践指南
背景介绍
在计算机视觉领域,自监督学习已经成为一种强大的技术,它能够在没有标注数据的情况下学习有意义的视觉表示。Lightly是一个专注于自监督学习的Python库,而Detectron2则是Facebook AI Research开发的优秀目标检测框架。本文将介绍如何结合这两个工具,实现从自监督预训练到目标检测微调的完整流程。
技术实现要点
1. 自监督预训练阶段
自监督预训练的核心思想是利用数据本身的结构来学习特征表示,而不需要人工标注。在实现过程中,我们需要注意以下几个关键点:
-
模型架构设计:需要正确构建包含Detectron2骨干网络和投影头的模型结构。投影头通常采用多层感知机(MLP)结构,将高维特征映射到适合对比学习的低维空间。
-
数据预处理:使用SimCLRTransform对输入图像进行增强,包括随机裁剪、颜色抖动等操作,生成正样本对。
-
损失函数选择:NT-Xent损失(归一化温度缩放交叉熵损失)是SimCLR等对比学习方法的常用损失函数,温度参数(temperature)的设置对模型性能有重要影响。
-
训练参数优化:
- 较大的批量大小有助于对比学习(建议64或更大)
- 温度参数通常设置在0.1左右
- 使用学习率调度器(如ReduceLROnPlateau)来动态调整学习率
2. 微调阶段常见问题与解决方案
在将预训练模型迁移到下游检测任务时,可能会遇到训练不收敛或损失值居高不下的问题。这些问题通常源于以下原因:
-
图像归一化不一致:预训练和微调阶段必须使用相同的像素均值和标准差进行归一化。Detectron2默认使用BGR格式,而Lightly使用RGB格式,这会导致特征不匹配。
-
学习率设置不当:微调阶段的学习率通常需要比预训练阶段更小,特别是当使用预训练权重时。
-
模型配置不一致:预训练和微调必须使用相同的骨干网络配置(Base-RCNN-FPN.yaml),确保网络结构完全匹配。
最佳实践建议
-
数据准备:确保有足够数量的无标签数据用于自监督预训练(至少数千张),同时保证下游任务的标注数据质量。
-
训练监控:在预训练阶段,损失值应呈现稳定下降趋势。如果损失波动较大或下降缓慢,可能需要调整批量大小或温度参数。
-
渐进式微调:可以先冻结部分网络层进行微调,然后再解冻全部层进行端到端训练,这有助于稳定训练过程。
-
农业图像的特殊考虑:对于农业领域的图像,可能需要调整数据增强策略,例如增加对光照变化的鲁棒性,减少对颜色剧烈变化的增强。
通过遵循这些实践指南,研究人员和开发者可以更有效地利用Lightly和Detectron2构建强大的自监督学习流程,特别是在标注数据有限的领域应用中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00