.NET Extensions中的AI函数调用安全实践指南
2025-06-27 05:51:37作者:宗隆裙
在.NET Extensions项目中,AI功能调用(Function Calling)是一个强大的特性,它允许开发者将大型语言模型(LLM)的能力集成到应用程序中。然而,这种集成也带来了潜在的安全风险,特别是当处理来自LLM的输入参数时。本文将深入探讨如何安全地实现AI函数调用,并分享一些最佳实践。
理解AI函数调用的安全边界
当LLM调用开发者定义的函数时,所有传入的参数都应被视为不可信数据。这是因为LLM可能会被恶意用户操控,或者由于模型本身的局限性而产生不安全的输出。开发者必须对这些输入保持高度警惕,避免直接信任或使用这些数据执行敏感操作。
特殊参数类型的处理机制
.NET Extensions通过AIFunctionFactory为某些参数类型提供了特殊处理:
- CancellationToken:自动链接到原始调用的取消令牌,用于支持操作取消。
- AIFunctionArgument:提供所有传入参数的完整描述,以及包含
IServiceProvider在内的上下文信息。 - IServiceProvider:直接使用中间件链初始化时提供的服务提供者实例。
这些特殊类型的参数由框架自动处理,开发者可以安全地使用它们,而无需担心数据来源的可信度问题。
自定义参数绑定的安全考量
对于需要更灵活参数绑定的场景,开发者可以通过AIFunctionFactoryOptions.ConfigureParameterBinding选项实现自定义绑定逻辑。在这种场景下,开发者必须:
- 明确了解绑定逻辑的数据来源
- 自行验证所有输入数据的可信度
- 实现适当的数据清洗和验证机制
自定义绑定虽然提供了灵活性,但也将安全责任完全转移给了开发者,因此需要格外谨慎。
实例方法的安全优势
强烈建议将AI函数实现为实例方法而非静态方法。实例方法可以:
- 通过类实例访问可信的上下文信息(如当前用户的
ClaimsPrincipal) - 获取操作相关数据的真实来源(而非依赖LLM提供的信息)
- 维护操作的状态和上下文,减少对不可信输入的依赖
这种方法比通过LLM来回传递上下文信息要安全得多,因为任何来自LLM的数据都可能被篡改或不可靠。
安全实践总结
- 永远不信任LLM输入:将所有传入参数视为潜在威胁
- 优先使用特殊参数类型:利用框架提供的安全机制
- 谨慎实现自定义绑定:确保完全控制数据验证流程
- 采用实例方法模式:通过对象实例获取可信上下文
- 最小权限原则:确保AI函数只拥有完成其任务所需的最小权限
通过遵循这些实践,开发者可以在享受AI强大功能的同时,有效降低安全风险,构建既强大又可靠的智能应用程序。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1