Qwen2.5-VL视觉模型对抗扰动生成方法探讨
在计算机视觉与自然语言处理相结合的跨模态模型中,对抗样本的生成一直是一个具有挑战性的研究课题。本文将以Qwen2.5-VL模型为例,深入探讨针对这类视觉语言模型的对抗扰动生成方法及其技术难点。
传统对抗样本生成方法的局限性
传统的对抗样本生成方法通常基于梯度计算,直接在图像张量上添加微小扰动。这类方法在纯视觉模型中表现良好,但在处理Qwen2.5-VL这类视觉语言模型时会遇到特殊挑战。
Qwen2.5-VL模型对视觉输入的处理采用了特殊的预处理流程,必须通过process_vision_info方法将输入图像转换为pixel_value和image_grid_thw两部分。这种特殊的处理方式使得直接应用传统对抗样本生成方法变得困难。
技术难点分析
-
预处理流程的不可逆性:直接对张量进行操作后,再通过processor处理会导致pixel_values发生变化,最终影响模型输出结果。
-
双通道输入结构:模型同时需要pixel_value和image_grid_thw两种形式的输入,增加了扰动生成的复杂性。
-
梯度传播的完整性:在跨模态模型中,梯度需要在视觉和语言两个模块间有效传播,这对扰动生成提出了更高要求。
可行的解决方案
针对Qwen2.5-VL模型的特殊架构,可以考虑以下技术路线:
-
预处理感知的对抗攻击:在生成扰动时,需要完整考虑模型的整个预处理流程,而不仅仅是最终的张量形式。
-
端到端的梯度计算:构建包含预处理步骤在内的完整计算图,确保梯度能够正确传播到原始图像空间。
-
替代模型方法:训练一个能够模拟Qwen2.5-VL预处理行为的替代模型,在这个替代模型上生成对抗样本。
-
基于优化的黑盒攻击:当无法获取模型内部细节时,可以采用基于优化的黑盒攻击方法,通过多次查询来估计有效扰动。
实践建议
在实际操作中,研究人员可以:
-
仔细研究Qwen2.5-VL的预处理代码,理解pixel_value和image_grid_thw的具体计算方式。
-
尝试在预处理前后保持张量的一致性,可能需要调整扰动生成算法以适应特定的数值范围和处理流程。
-
考虑使用投影梯度下降(PGD)等方法的变体,将预处理约束纳入优化过程。
-
对于重要的应用场景,建议进行充分的实验验证,确保生成的对抗样本在真实环境中有效。
总结
针对Qwen2.5-VL这类先进的视觉语言模型生成对抗扰动,需要超越传统的图像对抗样本生成方法。研究人员必须深入理解模型的特有预处理流程,并开发能够适应这种特殊架构的对抗攻击技术。这一领域仍有很大的研究空间,未来的工作可以探索更高效、更通用的跨模态对抗样本生成方法。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00