Qwen2.5-VL视觉模型对抗扰动生成方法探讨
在计算机视觉与自然语言处理相结合的跨模态模型中,对抗样本的生成一直是一个具有挑战性的研究课题。本文将以Qwen2.5-VL模型为例,深入探讨针对这类视觉语言模型的对抗扰动生成方法及其技术难点。
传统对抗样本生成方法的局限性
传统的对抗样本生成方法通常基于梯度计算,直接在图像张量上添加微小扰动。这类方法在纯视觉模型中表现良好,但在处理Qwen2.5-VL这类视觉语言模型时会遇到特殊挑战。
Qwen2.5-VL模型对视觉输入的处理采用了特殊的预处理流程,必须通过process_vision_info方法将输入图像转换为pixel_value和image_grid_thw两部分。这种特殊的处理方式使得直接应用传统对抗样本生成方法变得困难。
技术难点分析
-
预处理流程的不可逆性:直接对张量进行操作后,再通过processor处理会导致pixel_values发生变化,最终影响模型输出结果。
-
双通道输入结构:模型同时需要pixel_value和image_grid_thw两种形式的输入,增加了扰动生成的复杂性。
-
梯度传播的完整性:在跨模态模型中,梯度需要在视觉和语言两个模块间有效传播,这对扰动生成提出了更高要求。
可行的解决方案
针对Qwen2.5-VL模型的特殊架构,可以考虑以下技术路线:
-
预处理感知的对抗攻击:在生成扰动时,需要完整考虑模型的整个预处理流程,而不仅仅是最终的张量形式。
-
端到端的梯度计算:构建包含预处理步骤在内的完整计算图,确保梯度能够正确传播到原始图像空间。
-
替代模型方法:训练一个能够模拟Qwen2.5-VL预处理行为的替代模型,在这个替代模型上生成对抗样本。
-
基于优化的黑盒攻击:当无法获取模型内部细节时,可以采用基于优化的黑盒攻击方法,通过多次查询来估计有效扰动。
实践建议
在实际操作中,研究人员可以:
-
仔细研究Qwen2.5-VL的预处理代码,理解pixel_value和image_grid_thw的具体计算方式。
-
尝试在预处理前后保持张量的一致性,可能需要调整扰动生成算法以适应特定的数值范围和处理流程。
-
考虑使用投影梯度下降(PGD)等方法的变体,将预处理约束纳入优化过程。
-
对于重要的应用场景,建议进行充分的实验验证,确保生成的对抗样本在真实环境中有效。
总结
针对Qwen2.5-VL这类先进的视觉语言模型生成对抗扰动,需要超越传统的图像对抗样本生成方法。研究人员必须深入理解模型的特有预处理流程,并开发能够适应这种特殊架构的对抗攻击技术。这一领域仍有很大的研究空间,未来的工作可以探索更高效、更通用的跨模态对抗样本生成方法。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00