基于ModelScope/Swift框架的Qwen2.5-VL-3B-Instruct模型GRPO训练方法详解
2025-05-31 20:25:45作者:齐添朝
引言
在大型语言模型(LLM)的微调领域,参数高效微调技术(PEFT)如LoRA已成为研究热点。本文将深入探讨如何在ModelScope/Swift框架下,使用GRPO(Generalized Reinforcement Policy Optimization)方法对Qwen2.5-VL-3B-Instruct多模态大模型进行LoRA微调。
GRPO与LoRA技术背景
GRPO是一种先进的强化学习优化算法,相比传统的PPO(Policy Proximal Optimization),它在策略优化过程中提供了更好的稳定性和收敛性。而LoRA(Low-Rank Adaptation)技术则通过在原始模型参数旁添加低秩适配器,实现高效参数微调,大大降低了训练资源需求。
Qwen2.5-VL-3B-Instruct模型特点
Qwen2.5-VL-3B-Instruct是一个30亿参数规模的多模态大模型,具备视觉-语言联合理解能力。该模型特别适合需要同时处理图像和文本的指令跟随任务,如视觉问答、图像描述生成等。
具体实现方法
在ModelScope/Swift框架中,实现GRPO+LoRA训练的核心命令如下:
swift rlhf \
--rlhf_type grpo \
--model Qwen/Qwen2.5-VL-3B-Instruct \
--train_type lora
这条命令包含了三个关键参数:
rlhf_type grpo:指定使用GRPO算法进行强化学习人类反馈训练model Qwen/Qwen2.5-VL-3B-Instruct:指定基础模型train_type lora:指定使用LoRA方式进行参数高效微调
技术优势分析
这种组合方式具有多重优势:
- 计算效率:LoRA仅训练少量参数,大幅降低显存占用
- 训练稳定性:GRPO算法相比传统PPO有更好的收敛特性
- 多模态适配:特别适合Qwen2.5-VL这类视觉语言模型的微调
- 迁移学习能力:微调后的适配器可以灵活应用于不同下游任务
实际应用建议
对于希望使用此技术的开发者,建议:
- 准备高质量的视觉-语言对齐数据集
- 根据任务需求调整LoRA的rank参数
- 监控训练过程中的奖励曲线,适时调整GRPO超参数
- 考虑结合模型量化技术进一步降低部署成本
结语
GRPO+LoRA的组合为多模态大模型的高效微调提供了新的技术路径。ModelScope/Swift框架的集成实现使得这一先进技术能够被更广泛地应用在实际项目中。未来,随着算法和框架的不断优化,这种参数高效的强化学习微调方法将在更多场景中展现其价值。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
169
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
374
3.2 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92