Visual Prompt Retrieval 开源项目教程
2024-09-21 03:02:12作者:丁柯新Fawn
1. 项目介绍
Visual Prompt Retrieval 是一个研究计算机视觉中上下文示例效果的开源项目。该项目提出了一种Prompt Retrieval框架,用于自动选择示例。该框架包括两种方法:无监督的UnsupPR和有监督的SupPR。项目的主要目标是解决在视觉任务中选择合适示例的问题,特别是在少样本学习场景下。
2. 项目快速启动
环境设置
首先,创建并激活一个Python环境:
conda create -n visual_prompt python=3.8
conda activate visual_prompt
然后,安装项目所需的依赖包:
pip install -r requirements.txt
数据准备
项目的数据准备基于Visual Prompt。请按照以下步骤准备PASCAL-5i数据集:
- 下载PASCAL-5i数据集。
- 将数据集解压到项目目录下的
data
文件夹中。
运行项目
根据需要选择无监督或有监督的策略来运行项目:
无监督Prompt Retrieval
python main_pretrain.py --strategy unsup
有监督Prompt Retrieval
python main_pretrain.py --strategy sup
3. 应用案例和最佳实践
应用案例
Visual Prompt Retrieval 可以应用于多种计算机视觉任务,如图像分类、目标检测和语义分割。以下是一个典型的应用案例:
- 图像分类:在少样本学习场景下,使用Visual Prompt Retrieval自动选择示例,提高模型的分类准确率。
最佳实践
- 数据预处理:确保数据集的预处理步骤符合项目要求,以获得最佳性能。
- 模型选择:根据任务需求选择合适的模型和策略(无监督或有监督)。
- 超参数调优:通过调整超参数(如学习率、批量大小等)来优化模型性能。
4. 典型生态项目
Visual Prompt Retrieval 可以与其他计算机视觉项目结合使用,以增强其功能和性能。以下是一些典型的生态项目:
- CLIP:结合CLIP模型,利用其强大的视觉语言对齐能力,进一步提升Visual Prompt Retrieval的效果。
- MMDetection:与MMDetection框架集成,用于目标检测任务中的示例选择。
- Timm:使用Timm库中的预训练模型,加速模型的训练过程。
通过这些生态项目的结合,可以进一步扩展Visual Prompt Retrieval的应用场景和性能。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区016
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
《SIFTGPU:在GPU上实现尺度不变特征变换的安装与使用教程》 探索开源漫画阅读器ComicFlow:安装与使用教程 《USB Cam:开启ROS 2相机之旅》 深入探索ns-3-dev:开源网络模拟器的安装与使用指南 《lest测试框架的安装与使用教程》 《A-KAZE特征点的提取与匹配:开源项目实战指南》 《DS3232RTC库的安装与使用教程》 《轻松掌握C++正则表达式:CppVerbalExpressions实战指南》 探索frePPLe:制造业供应链计划的开源解决方案安装与使用教程 《ROS-Industrial 基础培训教程:industrial_training 的安装与使用》
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
53
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
64
16
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27