开源项目教程:Retrieval-Augmented-Visual-Question-Answering
2024-08-25 16:45:28作者:秋泉律Samson
1. 项目的目录结构及介绍
Retrieval-Augmented-Visual-Question-Answering/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── model.py
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── config/
│ ├── default.yaml
│ └── custom.yaml
├── README.md
├── requirements.txt
└── setup.py
目录结构说明
data/
: 存放项目所需的数据,包括原始数据(raw/
)和处理后的数据(processed/
)。models/
: 包含项目的模型定义文件,model.py
定义了主要的模型结构。scripts/
: 包含训练(train.py
)和评估(evaluate.py
)脚本。config/
: 存放配置文件,default.yaml
为默认配置,custom.yaml
为用户自定义配置。README.md
: 项目说明文档。requirements.txt
: 项目依赖包列表。setup.py
: 项目安装脚本。
2. 项目的启动文件介绍
启动文件:scripts/train.py
train.py
是项目的主要启动文件,用于训练模型。其主要功能包括:
- 加载配置文件。
- 初始化模型和数据加载器。
- 执行训练循环。
- 保存训练好的模型。
使用方法
python scripts/train.py --config config/default.yaml
3. 项目的配置文件介绍
配置文件:config/default.yaml
default.yaml
是项目的默认配置文件,包含了模型训练所需的各种参数,例如:
data:
path: "data/processed"
batch_size: 32
model:
name: "retrieval_vqa"
hidden_size: 256
training:
epochs: 10
learning_rate: 0.001
配置文件说明
data
: 数据相关配置,包括数据路径和批次大小。model
: 模型相关配置,包括模型名称和隐藏层大小。training
: 训练相关配置,包括训练轮数和学习率。
通过修改 default.yaml
或创建 custom.yaml
文件,可以自定义训练过程中的各种参数。
以上是关于 Retrieval-Augmented-Visual-Question-Answering
项目的目录结构、启动文件和配置文件的详细介绍。希望这份教程能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3