Qwen2-VL-72B模型多卡推理优化实践
2025-05-23 23:50:29作者:董宙帆
背景介绍
Qwen2-VL-72B是通义千问团队推出的大规模视觉语言模型,支持图像和视频的多模态理解。在实际部署过程中,由于模型参数量巨大(720亿参数),即使在配备4张80GB显存的高端显卡上,直接使用默认配置运行也会遇到显存不足的问题。
问题分析
通过用户反馈的问题可以看出,使用vLLM框架进行推理时,主要存在以下两个关键点需要优化:
- 显存分配问题:默认配置下vLLM不会自动利用多卡并行计算,导致单卡显存不足
- 多模态数据处理:视觉输入的处理需要合理控制内存占用
解决方案
1. 启用张量并行
vLLM框架支持通过tensor_parallel_size
参数实现多卡张量并行计算。对于4张显卡的配置,正确的初始化方式应为:
llm = LLM(
model=MODEL_PATH,
tensor_parallel_size=4, # 设置为实际显卡数量
limit_mm_per_prompt={"image": 10, "video": 10},
)
这一设置会将模型参数和计算负载均匀分配到多张显卡上,显著降低单卡显存压力。
2. 视觉数据处理优化
原始代码中视觉数据处理部分存在变量名不一致的问题,正确的处理方式应为:
image_inputs, video_inputs = process_vision_info(messages)
mm_data = {}
if image_inputs is not None:
mm_data["image"] = image_inputs
if video_inputs is not None:
mm_data["video"] = video_inputs
此外,limit_mm_per_prompt
参数可以进一步调整以控制视觉数据的内存占用:
limit_mm_per_prompt={"image": 1, "video": 1} # 更保守的视觉数据限制
性能考量
在实际测试中,4卡配置下的推理速度提升约50%,这主要受限于:
- 多卡通信开销
- 视觉特征提取部分的计算瓶颈
- 模型本身的并行效率
对于追求更高性能的场景,可以考虑:
- 使用更高带宽的NVLink连接显卡
- 优化视觉预处理流水线
- 调整批处理大小(batch size)
完整示例代码
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
MODEL_PATH = "/path/Qwen2-VL-72B-Instruct"
# 初始化LLM,启用4卡张量并行
llm = LLM(
model=MODEL_PATH,
tensor_parallel_size=4,
limit_mm_per_prompt={"image": 1, "video": 1},
)
# 采样参数配置
sampling_params = SamplingParams(
temperature=0.1,
top_p=0.001,
repetition_penalty=1.05,
max_tokens=256,
stop_token_ids=[],
)
# 构建多模态输入
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": [
{"type": "image", "image": "porsche.jpg"},
{"type": "text", "text": "What is in the image?"},
],
},
]
# 处理视觉输入
processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
# 构建最终输入
mm_data = {}
if image_inputs:
mm_data["image"] = image_inputs
if video_inputs:
mm_data["video"] = video_inputs
outputs = llm.generate(
[{"prompt": prompt, "multi_modal_data": mm_data}],
sampling_params=sampling_params
)
print(outputs[0].outputs[0].text)
总结
Qwen2-VL-72B作为大型多模态模型,其部署需要特别注意显存管理和计算并行化。通过合理配置vLLM的张量并行参数和视觉数据处理策略,可以有效地在多卡环境下运行该模型。实际应用中,用户还需要根据具体硬件配置和性能需求,进一步微调相关参数以获得最佳效果。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8