Qwen2-VL-72B模型多卡推理优化实践
2025-05-23 02:31:45作者:董宙帆
背景介绍
Qwen2-VL-72B是通义千问团队推出的大规模视觉语言模型,支持图像和视频的多模态理解。在实际部署过程中,由于模型参数量巨大(720亿参数),即使在配备4张80GB显存的高端显卡上,直接使用默认配置运行也会遇到显存不足的问题。
问题分析
通过用户反馈的问题可以看出,使用vLLM框架进行推理时,主要存在以下两个关键点需要优化:
- 显存分配问题:默认配置下vLLM不会自动利用多卡并行计算,导致单卡显存不足
- 多模态数据处理:视觉输入的处理需要合理控制内存占用
解决方案
1. 启用张量并行
vLLM框架支持通过tensor_parallel_size参数实现多卡张量并行计算。对于4张显卡的配置,正确的初始化方式应为:
llm = LLM(
model=MODEL_PATH,
tensor_parallel_size=4, # 设置为实际显卡数量
limit_mm_per_prompt={"image": 10, "video": 10},
)
这一设置会将模型参数和计算负载均匀分配到多张显卡上,显著降低单卡显存压力。
2. 视觉数据处理优化
原始代码中视觉数据处理部分存在变量名不一致的问题,正确的处理方式应为:
image_inputs, video_inputs = process_vision_info(messages)
mm_data = {}
if image_inputs is not None:
mm_data["image"] = image_inputs
if video_inputs is not None:
mm_data["video"] = video_inputs
此外,limit_mm_per_prompt参数可以进一步调整以控制视觉数据的内存占用:
limit_mm_per_prompt={"image": 1, "video": 1} # 更保守的视觉数据限制
性能考量
在实际测试中,4卡配置下的推理速度提升约50%,这主要受限于:
- 多卡通信开销
- 视觉特征提取部分的计算瓶颈
- 模型本身的并行效率
对于追求更高性能的场景,可以考虑:
- 使用更高带宽的NVLink连接显卡
- 优化视觉预处理流水线
- 调整批处理大小(batch size)
完整示例代码
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
MODEL_PATH = "/path/Qwen2-VL-72B-Instruct"
# 初始化LLM,启用4卡张量并行
llm = LLM(
model=MODEL_PATH,
tensor_parallel_size=4,
limit_mm_per_prompt={"image": 1, "video": 1},
)
# 采样参数配置
sampling_params = SamplingParams(
temperature=0.1,
top_p=0.001,
repetition_penalty=1.05,
max_tokens=256,
stop_token_ids=[],
)
# 构建多模态输入
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": [
{"type": "image", "image": "porsche.jpg"},
{"type": "text", "text": "What is in the image?"},
],
},
]
# 处理视觉输入
processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
# 构建最终输入
mm_data = {}
if image_inputs:
mm_data["image"] = image_inputs
if video_inputs:
mm_data["video"] = video_inputs
outputs = llm.generate(
[{"prompt": prompt, "multi_modal_data": mm_data}],
sampling_params=sampling_params
)
print(outputs[0].outputs[0].text)
总结
Qwen2-VL-72B作为大型多模态模型,其部署需要特别注意显存管理和计算并行化。通过合理配置vLLM的张量并行参数和视觉数据处理策略,可以有效地在多卡环境下运行该模型。实际应用中,用户还需要根据具体硬件配置和性能需求,进一步微调相关参数以获得最佳效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705