LMDeploy项目对Qwen2-VL系列模型的支持现状分析
背景概述
LMDeploy作为一款高效的大语言模型部署工具,近期在社区中引发了关于其对Qwen2-VL系列模型支持情况的讨论。Qwen2-VL是通义千问团队推出的多模态大语言模型系列,包含2B、7B和72B等不同参数规模的版本,具备强大的视觉-语言理解能力。
当前支持情况
根据LMDeploy项目的最新进展,其主分支(main branch)已经实现了对Qwen2-VL系列模型的初步支持。然而需要注意的是,这一功能尚未包含在正式发布的版本中。目前最新的稳定版本v0.6.0尚不支持Qwen2-VL架构,这导致用户在尝试部署时会遇到模型架构识别错误的问题。
技术细节分析
当用户尝试使用v0.6.0版本部署Qwen2-VL模型时,系统会首先尝试使用PyTorch引擎运行,因为该模型架构未被明确支持。随后会抛出"Can not found rewrite for architectures: ['Qwen2VLForConditionalGeneration']"的错误,这表明当前的模型架构重写规则中尚未包含Qwen2-VL的特殊处理逻辑。
对于AWQ量化版本的Qwen2-VL模型,用户同样会遇到类似问题,系统会提示"ValueError: The checkpoint you are trying to load has model type qwen2_vl but Transformers does not recognize this architecture",这进一步验证了当前版本对Qwen2-VL系列支持不足的情况。
未来版本展望
根据项目维护者的最新消息,Qwen2-VL的完整支持将包含在即将发布的v0.6.1版本中。这一更新预计将在近期发布,届时用户将能够顺利部署Qwen2-VL系列的各种模型,包括2B、7B和72B等不同规模的版本。
建议与注意事项
对于急需使用Qwen2-VL模型的开发者,可以考虑以下方案:
- 等待官方v0.6.1版本的正式发布
- 如有紧急需求,可考虑从源码构建最新主分支版本
需要注意的是,不同规模的Qwen2-VL模型对硬件资源的需求差异较大,特别是72B版本需要充足的GPU内存支持。在部署前应充分评估硬件资源配置,确保能够满足模型推理的计算需求。
随着多模态大模型应用的普及,LMDeploy对Qwen2-VL系列的支持将为视觉-语言联合任务提供更高效的部署方案,值得开发者关注和期待。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00