LMDeploy项目对Qwen2-VL系列模型的支持现状分析
背景概述
LMDeploy作为一款高效的大语言模型部署工具,近期在社区中引发了关于其对Qwen2-VL系列模型支持情况的讨论。Qwen2-VL是通义千问团队推出的多模态大语言模型系列,包含2B、7B和72B等不同参数规模的版本,具备强大的视觉-语言理解能力。
当前支持情况
根据LMDeploy项目的最新进展,其主分支(main branch)已经实现了对Qwen2-VL系列模型的初步支持。然而需要注意的是,这一功能尚未包含在正式发布的版本中。目前最新的稳定版本v0.6.0尚不支持Qwen2-VL架构,这导致用户在尝试部署时会遇到模型架构识别错误的问题。
技术细节分析
当用户尝试使用v0.6.0版本部署Qwen2-VL模型时,系统会首先尝试使用PyTorch引擎运行,因为该模型架构未被明确支持。随后会抛出"Can not found rewrite for architectures: ['Qwen2VLForConditionalGeneration']"的错误,这表明当前的模型架构重写规则中尚未包含Qwen2-VL的特殊处理逻辑。
对于AWQ量化版本的Qwen2-VL模型,用户同样会遇到类似问题,系统会提示"ValueError: The checkpoint you are trying to load has model type qwen2_vl
but Transformers does not recognize this architecture",这进一步验证了当前版本对Qwen2-VL系列支持不足的情况。
未来版本展望
根据项目维护者的最新消息,Qwen2-VL的完整支持将包含在即将发布的v0.6.1版本中。这一更新预计将在近期发布,届时用户将能够顺利部署Qwen2-VL系列的各种模型,包括2B、7B和72B等不同规模的版本。
建议与注意事项
对于急需使用Qwen2-VL模型的开发者,可以考虑以下方案:
- 等待官方v0.6.1版本的正式发布
- 如有紧急需求,可考虑从源码构建最新主分支版本
需要注意的是,不同规模的Qwen2-VL模型对硬件资源的需求差异较大,特别是72B版本需要充足的GPU内存支持。在部署前应充分评估硬件资源配置,确保能够满足模型推理的计算需求。
随着多模态大模型应用的普及,LMDeploy对Qwen2-VL系列的支持将为视觉-语言联合任务提供更高效的部署方案,值得开发者关注和期待。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









