LMDeploy项目对Qwen2-VL系列模型的支持现状分析
背景概述
LMDeploy作为一款高效的大语言模型部署工具,近期在社区中引发了关于其对Qwen2-VL系列模型支持情况的讨论。Qwen2-VL是通义千问团队推出的多模态大语言模型系列,包含2B、7B和72B等不同参数规模的版本,具备强大的视觉-语言理解能力。
当前支持情况
根据LMDeploy项目的最新进展,其主分支(main branch)已经实现了对Qwen2-VL系列模型的初步支持。然而需要注意的是,这一功能尚未包含在正式发布的版本中。目前最新的稳定版本v0.6.0尚不支持Qwen2-VL架构,这导致用户在尝试部署时会遇到模型架构识别错误的问题。
技术细节分析
当用户尝试使用v0.6.0版本部署Qwen2-VL模型时,系统会首先尝试使用PyTorch引擎运行,因为该模型架构未被明确支持。随后会抛出"Can not found rewrite for architectures: ['Qwen2VLForConditionalGeneration']"的错误,这表明当前的模型架构重写规则中尚未包含Qwen2-VL的特殊处理逻辑。
对于AWQ量化版本的Qwen2-VL模型,用户同样会遇到类似问题,系统会提示"ValueError: The checkpoint you are trying to load has model type qwen2_vl
but Transformers does not recognize this architecture",这进一步验证了当前版本对Qwen2-VL系列支持不足的情况。
未来版本展望
根据项目维护者的最新消息,Qwen2-VL的完整支持将包含在即将发布的v0.6.1版本中。这一更新预计将在近期发布,届时用户将能够顺利部署Qwen2-VL系列的各种模型,包括2B、7B和72B等不同规模的版本。
建议与注意事项
对于急需使用Qwen2-VL模型的开发者,可以考虑以下方案:
- 等待官方v0.6.1版本的正式发布
- 如有紧急需求,可考虑从源码构建最新主分支版本
需要注意的是,不同规模的Qwen2-VL模型对硬件资源的需求差异较大,特别是72B版本需要充足的GPU内存支持。在部署前应充分评估硬件资源配置,确保能够满足模型推理的计算需求。
随着多模态大模型应用的普及,LMDeploy对Qwen2-VL系列的支持将为视觉-语言联合任务提供更高效的部署方案,值得开发者关注和期待。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









