Text4Vis 项目使用教程
2024-09-19 19:22:03作者:裘晴惠Vivianne
项目介绍
Text4Vis 是一个用于视频识别的视觉-语言模型转移项目。该项目的主要目标是利用预训练的视觉-语言模型来改进视频分类任务的性能。通过重新定义线性分类器的角色,并将其替换为来自预训练模型的不同知识,Text4Vis 能够生成良好的语义目标,从而实现高效的转移学习。该项目在多个视频识别场景中表现出色,包括零样本学习、少样本学习和一般识别。
项目快速启动
环境准备
在开始之前,请确保您的环境中安装了以下库:
- PyTorch >= 1.8
- RandAugment
- pprint
- tqdm
- dotmap
- yaml
- csv
可选库:
- decord(用于在线视频训练)
- torchnet(用于 ActivityNet 上的 mAP 评估)
数据准备
为了训练模型,您需要将视频提取为帧以加快读取速度。您可以参考 MVFNet 项目中的详细数据处理指南。
模型训练
以下是使用单机多 GPU 进行训练的示例命令:
# 例如,训练 8 帧的 ViT-B/32
sh scripts/run_train.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml
模型测试
以下是使用单视图进行验证的示例命令:
# 例如,在 Kinetics-400 上评估 8 帧的 ViT-B/32
sh scripts/run_test.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml exp/k400/ViT-B/32/f8/last_model.pt
应用案例和最佳实践
案例1:Kinetics-400 数据集上的视频分类
在 Kinetics-400 数据集上,Text4Vis 模型在多个配置下表现出色。例如,使用 8 帧的 ViT-B/32 模型,Top-1 准确率达到了 80%。
案例2:ActivityNet 数据集上的零样本评估
Text4Vis 模型在 ActivityNet 数据集上的零样本评估中,mAP 达到了 96.5%。这表明模型在跨数据集的零样本评估中具有很强的泛化能力。
最佳实践
- 数据预处理:确保视频数据被正确提取为帧,以提高训练效率。
- 模型选择:根据任务需求选择合适的模型配置,如帧数和模型架构。
- 多视图验证:在测试阶段使用多视图(如 4 个剪辑和 3 个裁剪)进行验证,以提高评估的准确性。
典型生态项目
1. ActionCLIP
ActionCLIP 是一个基于 CLIP 模型的动作识别项目,与 Text4Vis 类似,它也利用了视觉-语言模型的优势来改进视频分类任务。
2. MVFNet
MVFNet 是一个多视角视频特征提取项目,它提供了详细的数据处理指南,帮助用户将视频数据转换为适合训练的格式。
3. CLIP
CLIP 是一个预训练的视觉-语言模型,Text4Vis 项目基于 CLIP 模型进行了改进和扩展,以适应视频识别任务。
通过结合这些生态项目,用户可以构建更强大的视频识别系统。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355