Text4Vis 项目使用教程
2024-09-19 19:22:03作者:裘晴惠Vivianne
项目介绍
Text4Vis 是一个用于视频识别的视觉-语言模型转移项目。该项目的主要目标是利用预训练的视觉-语言模型来改进视频分类任务的性能。通过重新定义线性分类器的角色,并将其替换为来自预训练模型的不同知识,Text4Vis 能够生成良好的语义目标,从而实现高效的转移学习。该项目在多个视频识别场景中表现出色,包括零样本学习、少样本学习和一般识别。
项目快速启动
环境准备
在开始之前,请确保您的环境中安装了以下库:
- PyTorch >= 1.8
- RandAugment
- pprint
- tqdm
- dotmap
- yaml
- csv
可选库:
- decord(用于在线视频训练)
- torchnet(用于 ActivityNet 上的 mAP 评估)
数据准备
为了训练模型,您需要将视频提取为帧以加快读取速度。您可以参考 MVFNet 项目中的详细数据处理指南。
模型训练
以下是使用单机多 GPU 进行训练的示例命令:
# 例如,训练 8 帧的 ViT-B/32
sh scripts/run_train.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml
模型测试
以下是使用单视图进行验证的示例命令:
# 例如,在 Kinetics-400 上评估 8 帧的 ViT-B/32
sh scripts/run_test.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml exp/k400/ViT-B/32/f8/last_model.pt
应用案例和最佳实践
案例1:Kinetics-400 数据集上的视频分类
在 Kinetics-400 数据集上,Text4Vis 模型在多个配置下表现出色。例如,使用 8 帧的 ViT-B/32 模型,Top-1 准确率达到了 80%。
案例2:ActivityNet 数据集上的零样本评估
Text4Vis 模型在 ActivityNet 数据集上的零样本评估中,mAP 达到了 96.5%。这表明模型在跨数据集的零样本评估中具有很强的泛化能力。
最佳实践
- 数据预处理:确保视频数据被正确提取为帧,以提高训练效率。
- 模型选择:根据任务需求选择合适的模型配置,如帧数和模型架构。
- 多视图验证:在测试阶段使用多视图(如 4 个剪辑和 3 个裁剪)进行验证,以提高评估的准确性。
典型生态项目
1. ActionCLIP
ActionCLIP 是一个基于 CLIP 模型的动作识别项目,与 Text4Vis 类似,它也利用了视觉-语言模型的优势来改进视频分类任务。
2. MVFNet
MVFNet 是一个多视角视频特征提取项目,它提供了详细的数据处理指南,帮助用户将视频数据转换为适合训练的格式。
3. CLIP
CLIP 是一个预训练的视觉-语言模型,Text4Vis 项目基于 CLIP 模型进行了改进和扩展,以适应视频识别任务。
通过结合这些生态项目,用户可以构建更强大的视频识别系统。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705