Text4Vis 项目使用教程
2024-09-19 21:41:55作者:裘晴惠Vivianne
项目介绍
Text4Vis 是一个用于视频识别的视觉-语言模型转移项目。该项目的主要目标是利用预训练的视觉-语言模型来改进视频分类任务的性能。通过重新定义线性分类器的角色,并将其替换为来自预训练模型的不同知识,Text4Vis 能够生成良好的语义目标,从而实现高效的转移学习。该项目在多个视频识别场景中表现出色,包括零样本学习、少样本学习和一般识别。
项目快速启动
环境准备
在开始之前,请确保您的环境中安装了以下库:
- PyTorch >= 1.8
- RandAugment
- pprint
- tqdm
- dotmap
- yaml
- csv
可选库:
- decord(用于在线视频训练)
- torchnet(用于 ActivityNet 上的 mAP 评估)
数据准备
为了训练模型,您需要将视频提取为帧以加快读取速度。您可以参考 MVFNet 项目中的详细数据处理指南。
模型训练
以下是使用单机多 GPU 进行训练的示例命令:
# 例如,训练 8 帧的 ViT-B/32
sh scripts/run_train.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml
模型测试
以下是使用单视图进行验证的示例命令:
# 例如,在 Kinetics-400 上评估 8 帧的 ViT-B/32
sh scripts/run_test.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml exp/k400/ViT-B/32/f8/last_model.pt
应用案例和最佳实践
案例1:Kinetics-400 数据集上的视频分类
在 Kinetics-400 数据集上,Text4Vis 模型在多个配置下表现出色。例如,使用 8 帧的 ViT-B/32 模型,Top-1 准确率达到了 80%。
案例2:ActivityNet 数据集上的零样本评估
Text4Vis 模型在 ActivityNet 数据集上的零样本评估中,mAP 达到了 96.5%。这表明模型在跨数据集的零样本评估中具有很强的泛化能力。
最佳实践
- 数据预处理:确保视频数据被正确提取为帧,以提高训练效率。
- 模型选择:根据任务需求选择合适的模型配置,如帧数和模型架构。
- 多视图验证:在测试阶段使用多视图(如 4 个剪辑和 3 个裁剪)进行验证,以提高评估的准确性。
典型生态项目
1. ActionCLIP
ActionCLIP 是一个基于 CLIP 模型的动作识别项目,与 Text4Vis 类似,它也利用了视觉-语言模型的优势来改进视频分类任务。
2. MVFNet
MVFNet 是一个多视角视频特征提取项目,它提供了详细的数据处理指南,帮助用户将视频数据转换为适合训练的格式。
3. CLIP
CLIP 是一个预训练的视觉-语言模型,Text4Vis 项目基于 CLIP 模型进行了改进和扩展,以适应视频识别任务。
通过结合这些生态项目,用户可以构建更强大的视频识别系统。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133