Text4Vis 项目使用教程
2024-09-19 01:37:50作者:裘晴惠Vivianne
项目介绍
Text4Vis 是一个用于视频识别的视觉-语言模型转移项目。该项目的主要目标是利用预训练的视觉-语言模型来改进视频分类任务的性能。通过重新定义线性分类器的角色,并将其替换为来自预训练模型的不同知识,Text4Vis 能够生成良好的语义目标,从而实现高效的转移学习。该项目在多个视频识别场景中表现出色,包括零样本学习、少样本学习和一般识别。
项目快速启动
环境准备
在开始之前,请确保您的环境中安装了以下库:
- PyTorch >= 1.8
- RandAugment
- pprint
- tqdm
- dotmap
- yaml
- csv
可选库:
- decord(用于在线视频训练)
- torchnet(用于 ActivityNet 上的 mAP 评估)
数据准备
为了训练模型,您需要将视频提取为帧以加快读取速度。您可以参考 MVFNet 项目中的详细数据处理指南。
模型训练
以下是使用单机多 GPU 进行训练的示例命令:
# 例如,训练 8 帧的 ViT-B/32
sh scripts/run_train.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml
模型测试
以下是使用单视图进行验证的示例命令:
# 例如,在 Kinetics-400 上评估 8 帧的 ViT-B/32
sh scripts/run_test.sh configs/k400/k400_train_rgb_vitb-32-f8.yaml exp/k400/ViT-B/32/f8/last_model.pt
应用案例和最佳实践
案例1:Kinetics-400 数据集上的视频分类
在 Kinetics-400 数据集上,Text4Vis 模型在多个配置下表现出色。例如,使用 8 帧的 ViT-B/32 模型,Top-1 准确率达到了 80%。
案例2:ActivityNet 数据集上的零样本评估
Text4Vis 模型在 ActivityNet 数据集上的零样本评估中,mAP 达到了 96.5%。这表明模型在跨数据集的零样本评估中具有很强的泛化能力。
最佳实践
- 数据预处理:确保视频数据被正确提取为帧,以提高训练效率。
- 模型选择:根据任务需求选择合适的模型配置,如帧数和模型架构。
- 多视图验证:在测试阶段使用多视图(如 4 个剪辑和 3 个裁剪)进行验证,以提高评估的准确性。
典型生态项目
1. ActionCLIP
ActionCLIP 是一个基于 CLIP 模型的动作识别项目,与 Text4Vis 类似,它也利用了视觉-语言模型的优势来改进视频分类任务。
2. MVFNet
MVFNet 是一个多视角视频特征提取项目,它提供了详细的数据处理指南,帮助用户将视频数据转换为适合训练的格式。
3. CLIP
CLIP 是一个预训练的视觉-语言模型,Text4Vis 项目基于 CLIP 模型进行了改进和扩展,以适应视频识别任务。
通过结合这些生态项目,用户可以构建更强大的视频识别系统。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
180
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57