LangChain项目中Ollama模型的结构化输出问题解析
2025-04-28 13:52:48作者:裘晴惠Vivianne
在LangChain项目的实际应用中,开发者经常需要处理大语言模型的结构化输出问题。本文将以一个典型的技术案例为切入点,深入分析如何正确使用LangChain框架实现结构化输出功能。
问题背景
在使用LangChain框架时,开发者尝试通过create_structured_output_chain方法让Ollama模型输出结构化数据。该方法期望模型能够按照预定义的Pydantic模型格式返回数据,但在实际操作中遇到了错误提示,表明Ollama模型不支持functions参数。
技术分析
1. 传统方法的局限性
原先的代码实现采用了create_structured_output_chain方法,这是LangChain早期版本提供的功能。该方法通过以下步骤工作:
- 定义Pydantic数据模型(如示例中的Dog类)
- 创建ChatPromptTemplate模板
- 使用
create_structured_output_chain将模型、提示模板和数据模型绑定
然而,这种方法在LangChain 0.1.1版本后已被标记为弃用,且与Ollama模型的兼容性存在问题。
2. 现代解决方案
LangChain推荐使用with_structured_output方法替代旧方案。这种方法采用了更简洁的链式调用语法:
chain = {'input': RunnablePassthrough()} | prompt | llm.with_structured_output(Dog)
这种实现方式具有以下优势:
- 兼容性更好:直接支持Ollama等社区模型
- 代码更简洁:采用管道操作符(|)实现链式调用
- 性能更优:减少了不必要的中间处理步骤
3. 实现原理
with_structured_output方法的核心工作原理是:
- 将Pydantic模型转换为模型可理解的输出格式要求
- 在模型调用时自动处理结构化输出约束
- 将模型原始输出解析为指定的Pydantic模型实例
最佳实践建议
基于此案例,我们总结出以下LangChain结构化输出的最佳实践:
- 版本适配:始终使用LangChain最新推荐的方法
- 模型选择:确认目标模型支持结构化输出功能
- 错误处理:对模型输出做好验证和异常捕获
- 性能优化:对于高频调用场景,可考虑缓存模型实例
结论
通过这个案例我们可以看到,LangChain框架正在不断演进其API设计。开发者应及时跟进框架更新,采用更现代、更高效的实现方式。对于结构化输出这种常见需求,理解底层原理并掌握正确的实现方法,能够显著提升开发效率和系统稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
281
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
248
317
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100