dstack 0.19.0版本发布:GPU云平台集成与分布式计算新特性
dstack是一个专注于提供多云GPU计算能力的开源平台,它简化了在不同云服务提供商上运行GPU工作负载的流程。通过抽象底层基础设施的复杂性,dstack让开发者能够专注于机器学习、深度学习等计算密集型任务的开发与部署。
后端集成简化
0.19.0版本对后端集成架构进行了重大重构,显著降低了新增云服务支持的开发难度。平台现已支持AWS、Azure、GCP等主流云服务,以及RunPod、Lambda等专业GPU提供商。新的集成架构通过模块化设计,将核心功能与特定云服务实现解耦,开发者只需实现少量必要接口即可完成新后端的接入。这种设计不仅提高了代码的可维护性,也为未来支持更多GPU提供商奠定了基础。
分布式计算能力增强
新版本在分布式任务支持方面取得了重要进展。平台现在自动配置节点间的SSH连接,使得在分布式环境中执行MPI任务变得异常简单。用户只需使用标准的ssh <node_ip>命令即可在集群节点间自由切换,这为运行mpirun等分布式计算工具提供了原生支持。这一特性特别适合需要进行NCCL测试或大规模分布式训练的场景,开发者可以轻松构建跨节点的计算集群。
监控与成本管理
0.19.0版本引入了全面的监控指标体系,在原有DCGM指标基础上新增了成本和使用量相关的Prometheus指标。这些指标包括:
- 实例运行成本
- 资源使用效率
- 任务执行开销
- 硬件利用率
通过这些指标,运维团队可以构建精细化的成本监控仪表盘,实时掌握GPU资源的使用情况和成本分布,为资源优化和预算控制提供数据支持。
开发环境支持扩展
平台现在新增了对Cursor IDE的支持,开发者可以在配置文件中简单指定ide: cursor即可启动基于Cursor的开发环境。这一特性进一步丰富了dstack的IDE生态系统,为不同开发偏好的用户提供了更多选择。
API与配置优化
本次发布对Python API进行了重构,废弃了原先设计不够优雅的get_plan()、exec_plan()等方法,引入了更符合RESTful设计原则的新接口。同时,平台移除了多项已弃用或未充分文档化的功能,包括:
- 旧的运行命令模式
- 资源池(Pools)功能
- 过时的重试策略配置
- 闲置终止时间设置
这些变更使得API更加简洁一致,减少了用户的认知负担。
技术架构演进
从技术架构角度看,0.19.0版本标志着dstack平台走向成熟的重要一步。通过解耦核心逻辑与云服务实现,平台获得了更好的扩展性;通过标准化监控指标,提升了运维可见性;通过简化分布式计算配置,增强了平台在AI训练等场景下的实用性。这些改进共同推动dstack向更稳定、更易用的方向发展。
对于现有用户,建议按照先升级服务器再升级客户端的顺序进行迁移,以确保兼容性。新用户可以借助这一版本更全面地评估dstack在多云GPU管理方面的能力。随着集成生态的持续丰富和核心功能的不断完善,dstack正在成为连接开发者与云端算力的重要桥梁。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00