Cariddi项目高CPU使用率问题分析与优化实践
2025-07-10 17:45:16作者:乔或婵
Cariddi作为一款开源的Web内容扫描工具,近期被用户反馈在处理大规模URL列表时存在CPU使用率过高的问题。本文将深入分析该问题的成因,并详细介绍开发团队采取的优化措施。
问题现象
当用户使用Cariddi扫描约150个URL时,工具表现出异常的CPU高负载现象,同时伴随显著的内存消耗。典型的使用场景是通过管道输入URL列表并启用多个扫描选项:
cat urls.txt | cariddi -info -s -err -e -ext 1 -json -c 5
监控数据显示CPU使用率峰值可达95%以上,这种情况即使在未启用某些扫描选项时仍然存在。
根本原因分析
经过开发团队深入调查,发现高CPU使用率主要源于以下几个方面:
-
正则表达式重复编译:原始代码中,针对密钥、错误信息和敏感信息的正则表达式匹配在每次处理HTML响应时都会重新编译,这种重复操作造成了大量不必要的计算开销。
-
并发控制不足:虽然工具提供了并发控制参数,但在实际处理大规模URL时,默认配置可能仍会导致系统资源过度消耗。
-
内存管理优化空间:在处理大量数据时,内存使用效率有待提高。
优化方案与实施
开发团队采取了多项措施来解决上述问题:
-
正则表达式编译优化:
- 将正则表达式的编译过程移至程序初始化阶段
- 预编译所有需要的正则表达式模式
- 在后续处理中复用已编译的正则表达式对象
- 这项优化显著减少了CPU在模式匹配时的计算负担
-
依赖库升级:
- 将核心依赖库colly升级至v2.2.0版本
- 利用新版库的性能改进和稳定性增强
-
资源使用建议:
- 合理设置并发数参数(-c)
- 适当调整请求延迟参数(-d)
- 使用路径忽略功能(-i)减少不必要的处理
优化效果
经过上述改进后,工具的资源使用效率得到明显提升:
- CPU使用率显著下降
- 内存占用更加稳定
- 整体扫描速度有所提高
最佳实践建议
对于Cariddi用户,特别是在处理大规模扫描任务时,建议:
- 根据目标服务器性能和自身系统资源合理设置并发数
- 优先使用最新版本的工具以获取性能优化
- 对于特定扫描场景,只启用必要的扫描选项
- 监控系统资源使用情况,及时调整参数
总结
Cariddi项目团队通过深入分析性能瓶颈,针对性地优化了核心算法和资源管理策略,有效解决了高CPU使用率问题。这一案例展示了性能优化在安全工具开发中的重要性,也为类似工具的性能调优提供了参考范例。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1