探索图任务与大型语言模型的融合:Awesome-LLMs-in-Graph-Tasks
2024-05-21 13:54:38作者:袁立春Spencer
在这个快速发展的时代,数据以图形的形式呈现越来越普遍,而大型语言模型(LLMs)已经在自然语言处理领域展现出了强大的潜力。当这两个世界相遇,会碰撞出怎样的火花呢?Awesome-LLMs-in-Graph-Tasks 是一个集大成的资源库,它揭示了如何利用LLMs提升图相关任务的性能,并提供了最新的研究进展。
项目简介
Awesome-LLMs-in-Graph-Tasks 是一项综合性的调查,汇集了一系列关于在图任务中应用大型语言模型的论文。这个项目旨在为研究人员和实践者提供一个一站式平台,了解LLMs如何增强对图结构的理解以及在实际应用中的最佳实践。此外,这个项目还基于最新文献提供了一个清晰的分类框架,帮助读者理解和掌握这一领域的核心概念。
项目技术分析
项目的核心是探讨如何将传统的图神经网络(GNNs)与大型语言模型结合,利用各自的优势互补。GNNs擅长捕捉图形结构信息,但受限于节点特征的语义表达;而LLMs在文本理解方面表现出色,却可能忽视图形中的结构关系。通过巧妙地集成这两种方法,我们可以创建更强大的图学习系统,这些系统能够理解和推断复杂的关系,无论是结构性的还是语境性的。
项目及技术应用场景
该项目涵盖了各种应用场景,如:
- 节点级任务:通过LLMs增强节点表示,提高节点属性预测的准确性。
- 链接级任务:利用LLMs理解上下文,改进链接预测。
- 图级别任务:全局视角下的任务,如图分类和聚类,借助LLMs可以更好地捕获图的全局特性。
- 图推理:LLMs可以增强路径搜索和逻辑推理能力。
- 图-文本检索:结合LLMs进行跨模态的信息检索。
- 图标题生成:自动生成能够准确描述图结构的文本。
项目特点
Awesome-LLMs-in-Graph-Tasks 的主要特点包括:
- 全面性:涵盖了大量的学术研究,不断更新,保持前沿性。
- 分类明确:基于提出的分类框架,方便用户查找特定类型的工作。
- 实用性强:不仅有理论研究,还包括代码实现,便于实践。
- 易于参与:鼓励社区成员提交补充或修正,促进知识共享。
如果你想深入探索大型语言模型在图形任务中的应用,或者寻找灵感来解决你的问题,那么Awesome-LLMs-in-Graph-Tasks绝对是不容错过的一站。快去给这个项目加星标并加入到这场创新的旅程中吧!
[](https://github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks)
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328