让大语言模型在知识图谱补全中表现更出色:KoPA项目推荐
2024-09-17 00:31:46作者:房伟宁
项目介绍
在当今信息爆炸的时代,知识图谱(Knowledge Graph, KG)作为连接实体与关系的桥梁,已经成为众多智能服务的基础设施。然而,知识图谱中的信息往往是不完整的,如何高效地补全这些缺失的三元组(即实体-关系-实体)成为了学术界和工业界共同关注的焦点。传统的知识图谱补全方法虽然在一定程度上解决了这个问题,但它们往往依赖于预定义的规则或有限的训练数据,难以应对复杂多变的现实场景。
为了突破这一瓶颈,我们推出了KoPA(Knowledge Prefix Adapter)项目,旨在通过引入大语言模型(Large Language Models, LLMs)来提升知识图谱补全的性能。KoPA不仅充分利用了LLMs强大的推理能力,还通过结构化嵌入预训练技术,将知识图谱中的结构信息融入到LLMs中,从而实现结构感知的推理。
项目技术分析
KoPA的核心技术在于其独特的知识前缀适配器(Knowledge Prefix Adapter)。该适配器通过结构化嵌入预训练,捕捉知识图谱中实体和关系的结构信息,并将这些信息投影到文本空间,生成虚拟的知识标记(tokens)。这些虚拟标记作为输入提示的前缀,能够有效地引导LLMs进行更准确的推理。
具体来说,KoPA的工作流程如下:
- 结构化嵌入预训练:首先,KoPA对知识图谱中的实体和关系进行结构化嵌入预训练,以捕捉其内在的结构信息。
- 虚拟知识标记生成:接着,KoPA将这些结构化嵌入投影到文本空间,生成虚拟的知识标记。
- 前缀引导推理:最后,这些虚拟标记作为输入提示的前缀,引导LLMs进行结构感知的推理,从而更准确地预测缺失的三元组。
项目及技术应用场景
KoPA的应用场景非常广泛,尤其适用于以下几个领域:
- 智能问答系统:在智能问答系统中,KoPA可以帮助系统更准确地理解用户的问题,并从知识图谱中提取相关信息,提供更精准的答案。
- 推荐系统:在推荐系统中,KoPA可以通过补全知识图谱中的缺失信息,提升推荐算法的准确性和个性化程度。
- 知识图谱构建与维护:在知识图谱的构建与维护过程中,KoPA可以帮助自动补全缺失的三元组,减少人工干预,提高效率。
项目特点
KoPA项目具有以下几个显著特点:
- 结构感知推理:通过引入知识前缀适配器,KoPA能够将知识图谱的结构信息融入到LLMs中,实现结构感知的推理,从而提升补全的准确性。
- 高效预训练:KoPA采用结构化嵌入预训练技术,能够在较短的时间内捕捉到知识图谱中的结构信息,为后续的推理提供坚实的基础。
- 灵活的模型架构:KoPA的模型架构设计灵活,可以轻松集成到现有的LLMs中,无需对模型进行大规模的修改。
- 全面的实验验证:项目团队进行了全面的实验验证,结果表明,引入结构信息的KoPA在知识图谱补全任务中表现优异,显著提升了LLMs的推理能力。
结语
KoPA项目通过创新的技术手段,成功地将大语言模型的强大推理能力与知识图谱的结构信息相结合,为知识图谱补全任务带来了新的突破。无论你是研究者、开发者,还是企业用户,KoPA都将成为你不可或缺的工具。立即访问我们的GitHub仓库,体验KoPA带来的革命性变化吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210